Long monolithic silica-C18 capillary columns of 100 microm i.d. were prepared, and the efficiency was examined using reversed-phase HPLC under a pressure of up to 47 MPa. At linear velocities of 1-2 mm/s, 100,000-500,000 theoretical plates could be generated with a single column (90-440 cm in length) using an acetonitrile-water (80/20) mobile phase with a column dead time (t0) of 5-40 min. It was possible to prepare columns with a minimum plate height of 8.5 +/- 0.5 microm and permeability of (1.45 +/- 0.09) x 10(-13) m(2). The chromatographic performance of a long octadecylsilylated monolithic silica capillary column was demonstrated by the high-efficiency separations of aromatic hydrocarbons, benzene derivatives, and a protein digest. The efficiency for a peptide was maintained for an injection of up to 0.5-2 ng. When three 100 microm i.d. columns were connected to form a 1130-1240 cm column system, 1,000,000 theoretical plates were generated for aromatic hydrocarbons with retention factors of up to 2.4 with a t0 of 150 min. The fact that very high efficiencies were obtained for the retained solutes suggests the practical utility of these long monolithic silica capillary columns.
An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 mum. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.