a b s t r a c t a-Axis-oriented undoped n-BaSi 2 epitaxial films were grown on Si(111) substrates by molecular beam epitaxy, and the crystalline quality and grain boundaries were investigated by means of reflection highenergy electron diffraction, X-ray diffraction, and transmission electron microscopy (TEM). The grain size of the BaSi 2 films was estimated to be approximately 0.1-0.3 mm, and straight grain boundaries (GBs) were observed in the plan-view TEM images. Dark-field TEM images under a two-beam diffraction condition showed that these GBs consist mostly of BaSi 2 {011} planes. The diffusion length of minority carriers in nBaSi 2 was found to be approximately 10 mm by an electron-beam-induced current technique.
We have successfully determined the bulk minority-carrier lifetime in BaSi2 epitaxial films by utilizing a drastic enhancement of lifetime by post-growth annealing at 800 °C, which is attributed to strain relaxation. From the film-thickness dependence of lifetime, we reveal that the bulk lifetime is 14 µs, which is long enough for thin-film solar cell applications. In addition, the sum of surface and interface recombination velocities is found to be as low as 8.3 cm/s presumably due to the ionic nature of BaSi2. This confirms that BaSi2 is promising as an absorption-layer material for earth-abundant thin-film solar cells.
Excess-carrier recombination mechanisms in undoped BaSi 2 epitaxial films grown by molecular beam epitaxy on n-type silicon substrates have been studied by the microwave-detected photoconductivity decay measurement. The measured excess-carrier decay is multiexponential, and we divided it into three parts in terms of the decay rate. Measurement with various excitation laser intensities indicates that initial rapid decay is due to Auger recombination, while the second decay mode with approximately constant decay to Shockley-Read-Hall recombination. Slow decay of the third decay mode is attributed to the carrier trapping effect. To analyze Shockley-Read-Hall recombination, the formulae are developed to calculate the effective lifetime (time constant of decay) from average carrier concentration. The measurement on the films with the thickness of 50-600 nm shows that the decay due to Shockley-Read-Hall recombination is the slower in the thicker films, which is consistent with the formulae. By fitting the calculated effective lifetime to experimental ones, the recombination probability is extracted. The recombination probability is found to be positively correlated with the full width at half-maximum of the X-ray rocking curves, suggesting that dislocations are acting as recombination centers. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.