Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants.
Normalization of tumor vasculature is an emerging strategy to improve cytotoxic therapies. Here we show that eliminating nitric oxide (NO) production from tumor cells via neuronal NO synthase silencing or inhibition establishes perivascular gradients of NO in human glioma xenografts in mice and normalizes the tumor vasculature, resulting in improved tumor oxygenation and response to radiation treatment. Creation of perivascular NO gradients may be an effective strategy for normalizing abnormal vasculature.
When erythrocytes are exposed to hypoxia, hemoglobin (Hb) stabilizes in the T-state by capturing 2,3-bisphosphoglycerate. This process could reduce the intracellular pool of glycolytic substrates, jeopardizing cellular energetics. Recent observations suggest that hypoxia-induced activation of glycolytic enzymes is correlated with their release from Band III (BIII) on the cell membrane. Based on these data, we developed a mathematical model of erythrocyte metabolism and compared hypoxia-induced differences in predicted activities of the enzymes, their products, and cellular energetics between models with and without the interaction of Hb with BIII. The models predicted that the allostery-dependent Hb interaction with BIII accelerates consumption of upstream glycolytic substrates such as glucose 6-phosphate and increases downstream products such as phosphoenolpyruvate. This prediction was consistent with metabolomic data from capillary electrophoresis mass spectrometry. The hypoxia-induced alterations in the metabolites resulted from acceleration of glycolysis, as judged by increased conversion of [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.