We study convergence to non-minimal quasi-stationary distributions for one-dimensional diffusions. We give a method for reducing the convergence to the tail behavior of the lifetime via a property we call the first hitting uniqueness. We apply the results to Kummer diffusions with negative drift and give a class of initial distributions converging to each non-minimal quasi-stationary distribution.
Convergence to non-minimal quasi-stationary distributions for one-dimensional diffusions is studied. We give a method of reducing the convergence to the tail behavior of the lifetime via a property which we call the first hitting uniqueness. We apply the results to Kummer diffusions with negative drifts and give a class of initial distributions converging to each non-minimal quasi-stationary distribution.
For positive recurrent jumping-in diffusions with small jumps, we establish distributional limits of the fluctuations of inverse local times and occupation times. For this purpose, we introduce and utilize eigenfunctions with modified Neumann boundary condition and apply the Krein-Kotani correspondence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.