The androgen receptor (AR) regulates male sexual development. We have now investigated AR homodimerization, hormone-dependent monomerization and nuclear translocation in PC-3 and COS-1 cells, by utilizing mutations associated with the androgen insensitivity syndrome: Pro767Ala, Phe765Leu, Met743Val and Trp742Arg. AR wild type (WT) was expressed as a homodimer in the cytoplasm, while none of these mutants formed homodimers. Unlike AR WT which responded to 1 nM dihydrotestosterone (DHT) to dissociate and translocate into the nucleus, AR Pro767Ala and Phe765Leu mutants remain as the monomer in the cytoplasm. In the crystal structure of the AR LBD homodimer, Pro767 and Phe765 reside closely on a loop that constitutes the dimer interface; their sidechains interact with the Pro767 of the other monomer and with the DHT molecule in the ligand-binding pocket. These observations place Phe765 at a position to facilitate DHT binding to Pro767 and lead to dissociation of the AR homodimer in the cytoplasm. This Pro-Phe Met relay may constitute a structural switch that mediates androgen signaling and is conserved in other steroid hormone receptors.
Background: Estrogen receptor α (ERα) has been suggested to regulate anti-inflammatory signaling in brain microglia, the only resident immune cells in the brain. ERα conserves the phosphorylation motif at Ser216 within the DNA binding domain. Previously, Ser216 was found to be phosphorylated in neutrophils infiltrating into the mouse uterus and to enable ERα to regulate migration. Given the implication of this phosphorylation in immune regulation, ERα was examined in mouse microglia to determine if Ser216 is phosphorylated and regulates microglia's inflammation. It was found that Ser216 was constitutively phosphorylated in microglia and demonstrated that in the absence of phosphorylated ERα in ERα KI brains microglia inflamed, confirming that phosphorylation confers ERα with anti-inflammatory capability. ERα KI mice were obese and weakened motor ability. Methods: Mixed glia cells were prepared from brains of 2-days-old neonates and cultured to mature and isolate microglia. An antibody against an anti-phospho-S216 peptide of ERα (αP-S216) was used to detect phosphorylated ERα in double immunofluorescence staining with ERα antibodies and a microglia maker Iba-1 antibody. A knock-in (KI) mouse line bearing the phosphorylation-blocked ERα S216A mutation (ERα KI) was generated to examine inflammation-regulating functions of phosphorylated ERα in microglia. RT-PCR, antibody array, ELISA and FACS assays were employed to measure expressions of pro-or anti-inflammatory cytokines at their mRNA and protein levels. Rotarod tests were performed to examine motor connection ability. Results: Double immune staining of mixed glia cells showed that ERα is phosphorylated at Ser216 in microglia, but not astrocytes. Immunohistochemistry with an anti-Iba-1 antibody showed that microglia cells were swollen and shortened branches in the substantial nigra (SN) of ERα KI brains, indicating the spontaneous activation of microglia as observed with those of lipopolysaccharide (LPS)-treated ERα WT brains. Pro-inflammatory cytokines were up-regulated in the brain of ERα KI brains as well as cultured microglia, whereas anti-inflammatory cytokines were down-regulated. FACS analysis showed that the number of IL-6 producing and apoptotic microglia increased in those prepared from ERα KI brains. Times of ERα KI mice on rod were shortened in Rotarod tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.