Background: Extracellular endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate. Results: Disaccharide analysis showed that 2-O-, 6-O-, and N-trisulfated disaccharide units in heparan sulfate were increased to different degrees in different organs in Sulf1 and Sulf2 knock-out mice. Conclusion: Sulfs generate organ-specific sulfation patterns of heparan sulfate. Significance: This may indicate differences in activity between Sulf1 and Sulf2 in vivo.
Oxidative stress is known to play a critical role in the pathogenesis of various disorders, especially in ischemia/reperfusion (I/R) injury. We identified an apoptosis-inducing humoral factor and named this novel post translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) “oxidative stress-responsive apoptosis inducing protein” (ORAIP). The purpose of this study was to investigate the role of ORAIP in the mechanisms of cerebral I/R injury. Hypoxia/reoxygenation induced expression of ORAIP in cultured rat cerebral neurons, resulting in extensive apoptosis of these cells, which was largely suppressed by neutralizing anti-ORAIP monoclonal antibody (mAb) in vitro. Recombinant-ORAIP induced extensive apoptosis of cerebral neurons. Cerebral I/R induced expression of ORAIP in many neurons in a rat tandem occlusion model in vivo. In addition, we analyzed the effects of intracerebroventricular administration of neutralizing anti-ORAIP mAb on the development of cerebral infarction. Cerebral I/R significantly increased ORAIP levels in cerebrospinal fluid. Treatment with intracerebroventricular administration of neutralizing anti-ORAIP mAb reduced infarct volume by 72%, and by 55% even when started after reperfusion. These data strongly suggest that ORAIP plays a pivotal role and will offer a critical therapeutic target for cerebral I/R injury induced by thrombolysis and thrombectomy for acute ischemic stroke.
Decorin, the prototype of an expanding family of small leucine-rich proteoglycans, is involved in a number of cellular processes including matrix assembly, fibrillogenesis and the control of cell proliferation. In this study, we investigated the role of decorin in suppressing tumor aggressiveness and bone metastases. We used a metastatic breast cancer cell line, MDA-MB-231, to show that decorin causes marked growth suppression bothin vitro and in vivo. A cytomegaloviral vector containing the decorin transgene caused greatly reduced cell growth, motility and observed metastases. Bone metastases were decreased by >90% upon decorin transfection. These results demonstrate a novel role for decorin in the reduction or prevention of tumor metastases in this breast cancer model and could eventually lead to improved therapies for metastatic breast cancer.
The metastatic dissemination of cancer cells to remote areas of the body is the most problematic aspect in cancer patients. Among cancers, melanomas are notoriously difficult to treat due to their significantly high metastatic potential even during early stages. Hence, the establishment of advanced therapeutic approaches to regulate metastasis is required to overcome the melanoma disease. An accumulating mass of evidence has indicated a critical role of extracellular S100A8/A9 in melanoma distant metastasis. Lung S100A8/A9 is induced by melanoma cells from distant organs and it attracts these cells to its enriched lung environment since melanoma cells possess several receptors that sense the S100A8/A9 ligand. We hence aimed to develop a neutralizing antibody against S100A8/A9 that would efficiently block melanoma lung metastasis. Our protocol provided us with one prominent antibody, Ab45 that efficiently suppressed not only S100A8/A9‐mediated melanoma mobility but also lung tropic melanoma metastasis in a mouse model. This prompted us to make chimeric Ab45, a chimera antibody consisting of mouse Ab45‐Fab and human IgG2‐Fc. Chimeric Ab45 also showed significant inhibition of the lung metastasis of melanoma. From these results, we have high hopes that the newly produced antibody will become a potential biological tool to block melanoma metastasis in future clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.