The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome‐wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon‐decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter‐based analyses to define codon‐mediated mRNA decay and ribosome stall‐dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling‐dependent mRNA decay. We propose that codon‐mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.
Holliday junctions, four-stranded DNA structures formed during homologous recombination, are disentangled by resolvases that have been found in prokaryotes and eukaryotes but not in plant organelles. Here, we identify monokaryotic chloroplast 1 (MOC1) as a Holliday junction resolvase in chloroplasts by analyzing a green alga mutant defective in chloroplast nucleoid (DNA-protein complex) segregation. is structurally similar to a bacterial Holliday junction resolvase, resistance to ultraviolet (Ruv) C, and genetically conserved among green plants. Reduced or no expression of in leads to growth defects and aberrant chloroplast nucleoid segregation. In vitro biochemical analysis and high-speed atomic force microscopic analysis revealed that MOC 1 (AtMOC1) binds and cleaves the core of Holliday junctions symmetrically. MOC1 may mediate chloroplast nucleoid segregation in green plants by resolving Holliday junctions.
Amborella trichopoda is placed close to the base of the angiosperm lineage (basal angiosperm). By genome-wide RNA sequencing, we identified 184C-to-U RNA editing sites in the plastid genome of Amborella. This number is much higher than that observed in other angiosperms including maize (44 sites), rice (39 sites) and grape (115 sites). Despite the high frequency of RNA editing, the biased distribution of RNA editing sites in the genome, target codon preference and nucleotide preference adjacent to the edited cytidine are similar to that in other angiosperms, suggesting a common editing machinery. Consistent with this idea, the Amborella nuclear genome encodes 2–3 times more of the E- and DYW-subclass members of pentatricopeptide repeat proteins responsible for RNA editing site recognition in plant organelles. Among 165 editing sites in plastid protein coding sequences in Amborella, 100 sites were conserved at least in one out of 38 species selected to represent key branching points of the angiosperm phylogenetic tree. We assume these 100 sites represent at least a subset of the sites in the plastid editotype of ancestral angiosperms. We then mapped the loss and gain of editing sites on the phylogenetic tree of angiosperms. Our results support the idea that the evolution of angiosperms has led to the loss of RNA editing sites in plastids.
Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana. To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon–helix–helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris. The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.