Resident microglia are important to maintain homeostasis in the central nervous system, which includes the retina. The retinal microglia become activated in numerous pathological conditions, but the molecular signatures of these changes are poorly understood. Here, using an approach based on FACS and RNA‐seq, we show that microglial gene expression patterns gradually change during RGC degeneration induced by optic nerve injury. Most importantly, we found that the microglial cells strongly expressed Tnf and Il1α, both of which are known to induce neurotoxic reactive astrocytes, and were characterized by Gpr84high‐expressing cells in a particular subpopulation. Moreover, ripasudil, a Rho kinase inhibitor, significantly blunted Gpr84 expression and cytokine induction in vitro and in vivo. Finally, GPR84‐deficient mice prevented RGC loss in optic nerve‐injured retina. These results reveal that Rho kinase‐mediated GPR84 alteration strongly contribute to microglial activation and promote neurotoxicity, suggesting that Rho‐ROCK and GPR84 signaling may be potential therapeutic targets to prevent the neurotoxic microglial phenotype induced by optic nerve damage, such as occurs in traumatic optic neuropathy and glaucoma.
Background: Glaucoma is a leading cause of blindness worldwide and is characterized by degeneration associated with the death of retinal ganglion cells (RGCs). It is believed that glaucoma is a group of heterogeneous diseases with multifactorial pathomechanisms. Here, we investigate whether anti-inflammation treatment with an ER stress blockade can selectively promote neuroprotection against NMDA injury in the RGCs.Methods: Retinal excitotoxicity was induced with an intravitreal NMDA injection. Microglial activation and neuroinflammation were evaluated with Iba1 immunostaining and cytokine gene expression. A stable HT22 cell line transfected with an NF-kB reporter was used to assess NF-kB activity after hesperidin treatment. CHOP-deficient mice were used as a model of ER stress blockade. Retinal cell death was evaluated with a TUNEL assay.Results: In the NMDA injury group, Iba1-positive microglia increased 6 h after NMDA injection. Also at 6 h, pro-inflammatory cytokines and chemokines increased, including TNFα, IL-1b, IL-6 and MCP-1. In addition, the MCP-1 promoter-driven EGFP signal, which we previously identified as a stress signal in injured RGCs, also increased; hesperidin treatment suppressed this inflammatory response and reduced stressed RGCs. In CHOP-deficient mice that received an NMDA injection, the gene expression of pro-inflammatory cytokines, chemokines, markers of active microglia, and inflammatory regulators was greater than in WT mice. In WT mice, hesperidin treatment partially prevented retinal cell death after NMDA injury; this neuroprotective effect was enhanced in CHOP-deficient mice.Conclusions: These findings demonstrate that ER stress blockade is not enough by itself to prevent RGC loss due to neuroinflammation in the retina, but it has a synergistic neuroprotective effect after NMDA injury when combined with an anti-inflammatory treatment based on hesperidin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.