Paleostress analysis was conducted through a multiple stress inversion method using slip data recoded for the core samples from the Taiwan Chelung-pu Fault Drilling Project (TCDP). Two stress fields were obtained; one of these had horizontally plunging σ 1 , and the other has horizontally plunging σ 2 or σ 3 in the compressional stress direction of the Chi-Chi earthquake. Stress magnitude for both the stress fields was constrained by stress polygons, which indicated larger SHmax for horizontally plunging σ 1 than that in the case of horizontally plunging σ 2 or σ 3 . These differences in stress orientations and stress magnitude suggest that the change in stress filed can be caused by stress drop and stress buildup associated with seismic cycles. The seismic cycles recoded in the core samples from TCDP could include many events at geological timescale and not only the 1999 Chi-Chi earthquake.
We describe and interpret a system of well-preserved normal and reverse faults in the Kayo Formation of the Miocene Shimanto belt, an exhumed accretionary complex exposed on Okinawa Island. The normal and reverse fault systems both strike NE-SW, suggesting systematic horizontal stress variations between compression and extension. Temperature and pressure conditions for the normal and reverse fault systems were estimated from the densities of water in fluid inclusions in the veins along the faults, and previously reported maximum paleotemperature based on values of vitrinite reflectance and illite crystallinity. The fluid inclusion analyses yielded similar estimates for water density in both normal and reverse fault systems. The minimum geothermal gradient was constrained to a narrow range of 40–50 °C/km. These results suggest that the normal and reverse fault systems developed at a similar depth within the seismogenic zone. This can be interpreted as a change between horizontal compression and horizontal extension occurring at a maximum depth of 3.8–7.5 km below the seafloor, assuming lithostatic fluid pressure. This 90° rotation of the principal stress could be controlled by the seismic cycle, as exemplified by the rotation of stresses that occurred after the Tohoku-Oki earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.