Cuprous oxide has been prepared by the photoelectrochemical reduction of a CuO film formed on a conducting substrate by the anodic deposition from an alkaline solution of a Cu͑II͒-amino acid complex. Both copper oxide films thus prepared are found to be typical p-type semiconductors. The onset of the cathodic photocurrent due to the reduction of O 2 on CuO/ITO ͑ITO, indium tin oxide͒ and Cu 2 O/ITO electrodes give positive shifts of about 0.2 and 0.03 V, respectively, from the dark current rises. Optical bandgap energies of CuO films depend on the amino acids used, 1.56 ͑glycine͒, 1.40 ͑alanine͒, 1.38 ͑isoleucine͒, 1.38 eV ͑valine͒, and the value of E g for the Cu 2 O film is 2.17 eV. The relationship between the flatband potential (V FB ) and the pH for CuO and Cu 2 O films are both linear with the slope of about Ϫ60 mV/pH in agreement with the Nernstian expression for the V FB of a semiconductor.
Thin films of birnessite-type layered manganese oxides with various interlayer spacings have been prepared on a platinum electrode by a one-step electrochemical procedure. The process involves a potentiostatic oxidation of aqueous Mn(2+) ions at around +1.0 V (Ag/AgCl) in the presence of tetraalkylammonium cations with different alkyl chain lengths. X-ray diffraction indicates that the films deposited with tetrabutylammonium (TBA), tetrapropylammonium (TPA), and tetraethylammonium (TEA) ions are composed of a single phase where unhydrated tetraalkylammonium ions are accommodated as a monolayer between manganese oxide layers. The interlayer spacing of the products increases in an order of TEA < TPA < TBA. The film deposited with tetramethylammonium (TMA) is a mixture of two phases relating to hydrated and unhydrated guest cations, the former being predominant probably as a result of less hydrophobic property of TMA compared to that of other tetraalkylammonium ions. The TBA(+)-intercalated Mn oxide film-coated electrode exhibits a good charge/discharge property in a KCl solution between 0 and +0.8 V. In this case, TBA(+) ions between the Mn oxide layers are rapidly replaced with K(+) in solution by ion exchange, accompanying a shrinkage of the interlayer. The incorporated K(+) ions as well as protons play an important role in the electrochemical conversion between Mn(4+) and Mn(3+) in the oxide layer. In the TBACl solution, the interlayer TBA(+) ions can be excluded electrochemically during the positive-going scan, concomitant with the oxidation of Mn(3+) sites. This causes an anodic current and the accompanying shrinkage of the interlayer. On the reverse scan, however, the compressed interlayer does not allow the incorporation of bulky TBA(+) ions from the electrolyte, with virtually no cathodic current observed. Such an obvious difference in electrochemical behavior between the two electrolytes can be recognized by considering that most of the Mn oxide surface is present inside the layered structure, not on the external surface. This indicates that the layered structure is formed over the entire film.
Manganese and molybdenum mixed oxides in a thin film form were deposited anodically on a platinum substrate by cycling the electrode potential between 0 and +1.0 V vs Ag/AgCl in aqueous manganese(II) solutions containing molybdate anion (MoO(4)2-). A possible mechanism for the film formation is as follows. First, electrooxidation of Mn2+ ions with H2O yields Mn oxide and protons. Then, the protons being accumulated near the electrode surface react with MoO(4)2- to form polyoxomolybdate through a dehydrated condensation reaction (by protonation and dehydration). The condensed product coprecipitates with the Mn oxide. Cyclic voltammetry of the Mn/Mo oxide film-coated electrode in aqueous 0.5 M Na2SO4 solution exhibited a pseudocapacitive behavior with higher capacitance and better rate capability than that of the pure Mn oxide prepared similarly, most likely as a result of an increase in electrical conductivity of the film. Electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy clearly demonstrated that the observed pseudocapacitive behavior results from reversible extraction/insertion of hydrated protons to balance the charge upon oxidation/reduction of Mn3+/Mn4+ in the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.