Membrane vesicles (MVs) are secreted from a wide range of microbial species and transfer their content to other cells. Although MVs play critical roles in bacterial communication, whether MVs selectively interact with bacterial cells in microbial communities is unclear. In this study, we investigated the specificity of the MV-cell interactions and evaluated the potential of MVs to target bacterial cells for delivery. MV association with bacterial cells was examined using a fluorescent membrane dye to label MVs. MVs derived from the enterobacterium Buttiauxella agrestis specifically interacted with cells of the parent strain but interacted less specifically with those of other genera tested in this study. Electron microscopic analyses showed that MVs were not only attached on B. agrestis cells but also fused to them. The interaction energy, which was characterized by hydrodynamic diameter and zeta potential based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, was significant low between MVs and cells in B. agrestis, compared to those between B. agrestis MVs and cells of other genera. Similar specific interaction was also occurred between B. agrestis MVs and cells of six other species belonging to Buttiauxella spp. B. agrestis harboring plasmid pBBR1MCS-1 secreted plasmid-containing MVs (p-MVs), and plasmid DNA in p-MVs was transferred to the same species. Moreover, antibiotic-associated MVs enabled effective killing of target species; the survival rate of B. agrestis was lower than those of Escherichia coli and Pseudomonas aeruginosa in the presence of gentamicin-associated MVs derived from B. agrestis. Altogether, we provide the evidence that MVs selectively interact with target bacterial cells and offer a new avenue for controlling specific bacterial species using bacterial MVs in microbial communities.
Outer membrane vesicles (OMVs) are naturally released from gram-negative bacteria and play important roles in various biological functions. Released vesicles are not uniform in shape, size, and characteristics, and little is known about this diversity of OMVs. Here, we show that deletion of tolB, which encodes a part of the Tol-Pal system, leads to the production of multiple types of vesicles and increases overall vesicle production in the high-vesicle-forming strain Buttiauxella agrestis JCM 1090T. The ΔtolB mutant produced small OMVs and multilamellar/multivesicular OMVs (M-OMVs), as well as vesicles with a strikingly similarity to the wild type. M-OMVs, previously undescribed, contained triple lamellar membrane vesicles and multiple vesicle-incorporating vesicles. Ultracentrifugation enabled the separation and purification of each type of OMVs released from the ΔtolB mutant, and visualization by quick-freeze deep-etch and replica electron microscopy indicated that M-OMVs are composed of several lamellar membranes. Visualization of intracellular compartments of ΔtolB cells showed that vesicles were accumulated in the broad periplasm, which is probably due to the low linkage between the outer and inner membranes attributed to the Tol-Pal defect. The outer membrane was invaginating inward by wrapping a vesicle and the precursor of M-OMVs existed in the cell. Thus, we demonstrated a novel type of bacterial OMVs and showed that unconventional processes enable B. agrestis ΔtolB mutant to form unique vesicles. IMPORTANCE Membrane vesicle (MV) formation has been recognized as a common mechanism in prokaryotes, and MVs play critical roles in intercellular interaction. However, a broad range of MV types and their multiple production processes make it difficult to gain a comprehensive understanding of MVs. In this work, using vesicle separation and electron microscopic analyses, we demonstrated that diverse types of outer membrane vesicles (OMVs) were released from an engineered strain, Buttiauxella agrestis 1090T ΔtolB mutant. We also discovered a previously undiscovered type of vesicles, multilamellar/multivesicular outer membrane vesicles (M-OMVs), which were released by this mutant using an unconventional process. These findings have facilitated considerable progress in understanding MV diversity and expanding the utility of MVs in biotechnological applications.
Membrane vesicles (MVs) are lumen-containing spheres of lipid bilayers secreted by all prokaryotes into the extracellular milieu. They have multifunctional roles in stress response, virulence transfer, biofilm formation, and microbial interactions. Remarkably, MVs contain various components, including lytic enzymes, genetic materials, and hydrophobic signals, at high concentrations and transfer them effectively to the target microbial cells. Therefore, MVs act as carriers for bactericidal effects, horizontal gene transfer, and quorum sensing. Although the purpose of secreted MVs remains unclear, recent reports have provided evidence that MVs selectively interact with microbial cells in order to transfer their content to the target species. Herein, we review microbial interactions using MVs and discuss MV-mediated selective delivery of their content to target microbial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.