Aim: To predict the accuracy percentage of At - risk students based on High withdrawal and Failure rate. Materials and methods: Logistic Regression with sample size = 20 and Generalised Linear Model (GLM) with sample size = 20 was iterated different times for predicting accuracy percentage of At - risk students. The Novel sigmoid function used in Logistic Regression maps prediction to probabilities which helps to improve the prediction of accuracy percentage. Results and Discussion: Logistic Regression has significantly better accuracy (94.48 %) compared to GLM accuracy (92.76 %). There was a statistical significance between Logistic regression and GLM (p=0.000) (p<0.05). Conclusion: Logistic Regression with Novel Sigmoid function helps in predicting with more accuracy percentage of At - risk students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.