Phony news or fake news spreads like a wildfire on social media causing loss to the society. Swift detection of fake news is a priority as it reduces harm to society. This paper developed a phony news detector for Reddit posts using popular machine learning techniques in conjunction with natural language processing techniques. Popular feature extraction algorithms like CountVectorizer (CV) and Term Frequency Inverse Document Frequency (TFIDF) were implemented. These features were fed to Multinomial Naive Bayes (MNB), Random Forest (RF), Support Vector Classifier (SVC), Logistic Regression (LR), AdaBoost, and XGBoost for classifying news as either genuine or phony. Finally, coefficient analysis was performed in order to interpret the best coefficients. The study revealed that the pipeline model of MNB and TFIDF achieved a best accuracy rate of 79.05% when compared to other pipeline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.