The diffusion coefficients D(12) of phenylbutazone at infinite dilution in supercritical CO(2) were measured by the chromatographic impulse response (CIR) method. The measurements were carried out over the temperature range from 308.2 to 343.2 K at pressures up to 40.0 MPa. In addition, the D(12) data of phenylbutazone at infinite dilution in ethanol were also measured by the Taylor dispersion method at 298.2-333.2K and at atmospheric pressure. The D(12) value of phenylbutazone increased from 4.45×10(-10) m(2) s(-1) at 298.2 K and 0.1 MPa in ethanol to about 1.43×10(-8) m(2) s(-1) at 343.2 K and 14.0 MPa in supercritical CO(2). It was found that all diffusion data of phenylbutazone measured in this study in supercritical CO(2) and in ethanol can be satisfactorily represented by the hydrodynamic equation over a wide range of fluid viscosity from supercritical state to liquid state with average absolute relative deviation of 5.4% for 112 data points.
Crystalline nanowhiskers (NWs) composed of fullerene C60 and C70 molecules, i.e., alloy NWs, were synthesized by a liquid-liquid interfacial precipitation method. The nominal composition of C70 ranged from 0 to 40 mass%. The bending tests of the alloy NWs were performed inside a high-resolution transmission electron microscope, and the deformation behavior was observed in situ. The bending force acting on the NWs were measured simultaneously by an optical deflection method, and the Young's modulus was estimated from the resulting force-flexure curves. The average Young's modulus was found to increase to approximately 30 GPa as the C70 composition was increased to the solubility limit. In contrast, the Young's modulus decreased with increasing NW diameter caused by the addition of C70.
Although a mdgnetop~umhile type of Bn icmtc(BaM) films with L'-LYIYIC onentalian perpendicular to film plane hn\e attrdcted considcrahle mere4 for high density magnetic rccording la)er, Bahl film.: deposited directly on morphitus substrates rc\calrd no preterentinl orientation In preriolc, studies. BaM layers uith excellent c.axis onenntton nnd large perpendicular anisotropy constant u'crc successfull) dcposiisd using ZnO(001) undcrlaycr.Hiwcver, their surfilce roughness R. \\as rather larger fix contact recording layer. Au( I 1 I) and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.