This study aims to assess the impact of monospecific Tectona grandis forest plantation on the soil mite abundance and diversity. To achieve these objectives, two sites situated in Ivory Coast were investigated. The first, a primary forest was characterized by a very weak human activities whereas the second, a teak plantation was characterized by a high disturbance performed during the planting. After extracting, sorted and description, 116 mite species were described in the two sites. Mite densities were lower in teak plantation and also higher in the litter and decreased to the depth in both sites. Species richness recorded in teak plantation (52 species) was significantly lower compared to primary forest (98 species). The same trend was observed for Oribatida but not for Gamasida. The lower Oribatida (5 vs. 17) and higher Oribatida (24 vs. 41) were recorded respectively in teak plantation and primary forest. Mite Shannon index and evenness were significantly different between sites. High Jaccard index values and the appearance of exclusive species in both habitats showed that the sites are very distinct. Total number of species recorded corresponded to 58%–63% of the total number of species estimated by ACE and Chao 1&2 estimators, indicating that the sampling effort was not sufficient. Mite abundance and diversity varied depending on the characteristics of habitats. Chemical element (Corg, Ctot, Ntot, and SOM) values were lower in teak plantation (disturbed habitat) and significantly different to primary forest in the topsoil. Apart from litter height, soil depth, pH and C/N ratio, others variables were strongly correlated to mite abundance and diversity.
The objective of the study conducted in the Lamto Guinean savannah situated at 165 km northwest of Abidjan, Côte d'Ivoire consisted to assess the changes in soil mite abundance, diversity and community structure specific to the second fire cycle applied in 2015, as well as the inter-annual variation between the two fire cycles (2014 and 2015). Three study sites (Salty marigot, Plateau and North piste) were selected in shrub savannah, where on each, three adjacent stands of 100 m x 50 m formerly delimited were considered. The three fire regimes (early, mid-season, and late fire) were respectively applied on the three sites and stands. Thus, 135 soil cores (5 soil cores × 3 sampling periods × 3 fire regimes or stands × 3 sites) were used for mite extraction. 108 soil cores were taken at two upper layers (0-5 and 5-10 cm) for determination of the bulk density and water content. Whatever the fire regimes, the mean density of soil mites decreased after the fire application. The highest value of density was observed through the early fire (1,715 ± 327 ind.m -2 ) whereas the lowest value was recorded during the mid season fire (1,433 ± 153 ind.m -2 ). 41 species had been recorded along the three fire regimes and distributed as follows: early fire 34 species, mid season fire 20 species , and late fire 13 species. The mean species richness of soil mites changed significantly across the fire regimes, and reduced after the fire application, except for the mid season fire. The Simpson diversity index was significantly modified across the fire regimes, and increased after the fire application. Beyond to 24 specialist species, over 50% of the species observed before the burns were rediscovery after the fire application, and could explain this variation. The inter-annual variation of soil mites showed that the density (early fire, mid season fire, and late fire), mite richness (early fire), and diversity (early fire and late fire) increased whereas the mite richness (mid season fire and late fire), and diversity (mid season fire) decreased, respe ctively, during 2015-burn compared to the previous cycle (2014-burn). The rebound of soil mite parameters during the second fire cycle could be assigned (i) to litter and woody debris, which burn in a mosaic, reflecting local fire intensity, (ii) improving of stand complexity and canopy structure, and (iii) fire tolerance of mites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.