Background Lung cancer (LC) is a malignant tumor originating in the bronchial mucosa or gland of the lung. Circular RNAs (circRNAs) are proved to be key regulators of tumor progression. However, the regulatory effect of circ_0001421 on lung cancer tumorigenesis remains unclear. Methods The expression levels of circ_0001421, microRNA-4677-3p (miR-4677-3p) and cell division cycle associated 3 (CDCA3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), Transwell and Tumor formation assays were performed to explore the role of circ_0001421 in LC. Glucose consumption and lactate production were examined by a Glucose assay kit and a Lactic Acid assay kit. Western blot was utilized to examine the protein levels of Hexokinase 2 (HK2) and CDCA3. The interaction between miR-4677-3p and circ_0001421 or CDCA3 was confirmed by dual-luciferase reporter assay. Results Circ_0001421 was increased in LC tissues and cells, and knockdown of circ_0001421 repressed cell proliferation, migration, invasion and glycolysis in vitro. Meanwhile, circ_0001421 knockdown inhibited LC tumor growth in vivo. Mechanistically, circ_0001421 could bind to miR-4677-3p, and CDCA3 was a target of miR-4677-3p. Rescue assays manifested that silencing miR-4677-3p or CDCA3 overexpression reversed circ_0001421 knockdown-mediated suppression on cell proliferation, migration, invasion and glycolysis in LC cells. Conclusion Circ_0001421 promoted cell proliferation, migration, invasion and glycolysis in LC by regulating the miR-4677-3p/CDCA3 axis, which providing a new mechanism for LC tumor progression.
To screen the prognosis-related autophagy genes of female lung adenocarcinoma by the transcriptome data and clinical data from The Cancer Genome Atlas (TCGA) database. In this study, screen meaningful female lung adenocarcinoma differential genes in TCGA, use univariate Cox proportional regression model to select genes related to prognosis, and establish the best risk model. In this study, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were applied for carrying out bioinformatics analysis of gene function. The gene expression and clinical data of 264 female lung adenocarcinoma patient samples were downloaded from TCGA. Twelve down-regulated genes: NRG3, DLC1, NLRC4, DAPK2, HSPB8, PPP1R15A, FOS, NRG1, PRKCQ, GRID1, MAP1LC3C, GABARAPL1. Up-regulated 15 genes: PARP1, BNIP3, P4HB, ATIC, IKBKE, ITGB4, VMP1, PTK6, EIF4EBP1, GAPDH, ATG9B, ERO1A, TMEM74, CDKN2A, BIRC5. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were significantly associated with autophagy and mitochondria (animals). Multifactor Cox analysis of autophagy-related genes showed that ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as independent prognostic indicators. According to the multivariate Cox proportional hazard regression model, there was a significant difference in the survival rate observed between the high-risk group (n = 124) and the low-risk group (n = 126) during the 10-year follow-up ( P < .05). Univariate Cox analysis showed that tumor stage, T, M, and N stages, and risk score were all related to the survival rate of female lung adenocarcinoma patients. Multivariate Cox analysis found that autophagy-related risk scores were independent predictors, with an area under curve (AUC) value of 0.842. At last, there is autophagy genes differentially expressed among various clinicopathological parameters: ATG4A, BAK1, CCR2, DLC1, ERO1A, FKBP1A, ITGA6. The risk score can be used as an independent prognostic indicator for female patients with lung adenocarcinoma. The autophagy genes ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as prognostic genes in female lung adenocarcinoma, which may be the targets of treatment in the future.
Background:Microwave therapy is a minimal invasive procedure and has been employed in clinical practice for the treatment of various types of cancers. However, its therapeutic application in non-small-cell lung cancer and the underlying mechanism remains to be investigated. This study aimed to investigate its effect on Lewis lung carcinoma (LLC) tumor in vivo.Methods:Fifty LLC tumor-bearing C57BL/6 mice were adopted to assess the effect of microwave radiation on the growth and apoptosis of LLC tumor in vivo. These mice were randomly assigned to 10 groups with 5 mice in each group. Five groups were treated by single pulse microwave at different doses for different time, and the other five groups were radiated by multiple-pulse treatment of a single dose. Apoptosis of cancer cells was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Western blotting was applied to detect the expression of proteins.Results:Single pulse of microwave radiation for 5 min had little effect on the mice. Only 15-min microwave radiation at 30 mW/cm2 significantly increased the mice body temperature (2.20 ± 0.82)°C as compared with the other groups (0.78 ± 0.29 °C, 1.24 ± 0.52 °C, 0.78 ± 0.42 °C, respectively), but it did not affect the apoptosis of LLC tumor cells significantly. Continous microwave radiation exposure, single dose microwave radiation once per day for up to seven days, inhibited cell division and induced apoptosis of LLC tumor cells in a dose- and duration-dependent manner. It upregulated the protein levels of p53, Caspase 3, Bax and downregulated Bcl-2 protein.Conclusions:Multiple exposures of LLC-bearing mice to microwave radiation effectively induced tumor cell apoptosis at least partly by upregulating proapoptotic proteins and downregulating antiapoptotic proteins. Continuous radiation at low microwave intensity for a short time per day is promising in treating non-small-cell lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.