To replace molecular biological and immunological methods, biosensors have recently been developed for the rapid and sensitive detection of bacteria. Among a wide variety of biological materials, bacteriophages have received increasing attention as promising alternatives to antibodies in biosensor applications. Thus, we herein present a rapid and highly selective detection method for pathogenic bacteria, which combines dark-field light scattering imaging with a plasmonic biosensor system. The plasmonic biosensor system employs bacteriophages as the biorecognition element and the aggregationinduced light scattering signal of gold nanoparticle-assembled silica nanospheres as a signal transducer. Using Staphylococcus aureus strain SA27 as a model analyte, we demonstrated that the plasmonic biosensor system detects S. aureus in the presence of excess Escherichia coli in a highly selective manner. After the sample and the S. aureus phage S13′-conjugated plasmon scattering probe were mixed, S. aureus detection was completed within 15−20 min with a detection limit of 8 × 10 4 colony forming units per milliliter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.