Magnetoencephalography (MEG) is a non-invasiveneuroimaging technique that provides a measure of cortical neural activity on a millisecond timescale with high spatial resolution. MEG has been clinically applied to various neurological diseases, including epilepsy and cognitive dysfunction. In the past decade, MEG has also emerged as an important investigatory tool in neurodevelopmental studies. It is therefore an opportune time to review how MEG is able to contribute to the study of atypical brain development. We limit this review to autism spectrum disorder (ASD). The relevant published work for children was accessed using PubMed on 5 January 2015. Case reports, case series, and papers on epilepsy were excluded. Owing to their accurate separation of brain activity in the right and left hemispheres and the higher accuracy of source localization, MEG studies have added new information related to auditoryevoked brain responses to findings from previous electroencephalography studies of children with ASD. In addition, evidence of atypical brain connectivity in children with ASD has accumulated over the past decade. MEG is well suited for the study of neural activity with high time resolution even in young children. Although further studies are still necessary, the detailed findings provided by neuroimaging methods may aid clinical diagnosis and even contribute to the refinement of diagnostic categories for neurodevelopmental disorders in the future.Key words: auditory-evoked field, autism spectrum disorder, connectivity, magnetoencephalography, young children. MAGNETOENCEPHALOGRAPHY IN YOUNG CHILDRENM AGNETOENCEPHALOGRAPHY (MEG) AND electroencephalography (EEG) are non-invasive methods for recording neural activity. Contrary to functional magnetic resonance imaging and singlephoton emission computed tomography, which measure a hemodynamic response linked to metabolic demand, MEG and EEG measure a direct consequence of the electrical activity of neurons. These two techniques have a temporal resolution of approximately 1 ms, which is the typical resolution of measurable electrical phenomena in the brain. These two techniques have advantages over other neuroimaging techniques for use in young children, including fewer constraints and the absence of radiation and unpleasant sounds.MEG has been in development for human use since the 1960s, and its development has been greatly
Autism spectrum disorder (ASD) has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical interhemispheric circuitry. In the context of ASD, alterations in both peripheral and central auditory processes have also attracted a great deal of interest because these changes appear to represent pathophysiological processes; therefore, many prior studies have focused on atypical auditory responses in ASD. The auditory evoked field (AEF), recorded by magnetoencephalography, and the synchronization of these processes between right and left hemispheres was recently suggested to reflect various cognitive abilities in children. However, to date, no previous study has focused on AEF synchronization in ASD subjects. To assess global coordination across spatially distributed brain regions, the analysis of Omega complexity from multichannel neurophysiological data was proposed. Using Omega complexity analysis, we investigated the global coordination of AEFs in 3–8-year-old typically developing (TD) children (n = 50) and children with ASD (n = 50) in 50-ms time-windows. Children with ASD displayed significantly higher Omega complexities compared with TD children in the time-window of 0–50 ms, suggesting lower whole brain synchronization in the early stage of the P1m component. When we analyzed the left and right hemispheres separately, no significant differences in any time-windows were observed. These results suggest lower right-left hemispheric synchronization in children with ASD compared with TD children. Our study provides new evidence of aberrant neural synchronization in young children with ASD by investigating auditory evoked neural responses to the human voice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.