Helicobacter pylori is a unique bacterial species that assimilates various steroids as membrane lipid components. Our group has recently found, however, that certain steroids may impair the viability of H. pylori. In this study, we go on to reveal that estradiol, androstenedione, and progesterone (PS) all have the potential to inhibit the growth of H. pylori. Of these three steroid hormones, progesterone demonstrated the most effective anti-H. pylori action. 17α-hydroxyprogesterone caproate (17αPSCE), a synthetic progesterone derivative, had a much stronger anti-H. pylori action than progesterone, whereas 17α-hydroxyprogesterone, a natural progesterone derivative, completely failed to inhibit the growth of the organism. Progesterone and 17αPSCE were both found to kill H. pylori through their bacteriolytic action. Among five bacterial species investigated, H. pylori was the only species susceptible to the bactericidal action of progesterone and 17αPSCE. The other four species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epiderimidis, all resisted this action. Progesterone and free-cholesterol (FC) obstructed each other's effects against the H. pylori cell. Taken in sum, these results suggest that progesterone and FC may bind to the identical region on the H. pylori cell surface. We expect these findings to contribute to the development of a novel anti-H. pylori steroidal agent.
This study demonstrated that the vitamin D3 decomposition product VDP1 exerts an antibacterial action against Helicobacter pylori but not against other bacteria. Treatment with VDP1 induced a collapse of cell membrane structures of H. pylori and ultimately lysed the bacterial cells. A unique dimyristoyl phosphatidylethanolamine in the membrane lipid compositions contributed to the interaction of VDP1 with H. pylori cells. In separate experiments, VDP1 had no influence on the viability of the human cancer cell lines MKN45 and T47D and lacked any vitamin D3-like hormonal action against the latter. In both 1H and 13C NMR analyses, the spectra patterns of VDP1 corresponded with those of Grundmann's ketone. These results suggest that VDP1 (or Grundmann's ketone-type indene compound) may become a fundamental structure for the development of new antibacterial substances with selective bactericidal action against H. pylori.
Helicobacter pylori assimilates various steroids as membrane lipid components, but it can also survive in the absence of steroids. It thus remains to be clarified as to why the organism relies on steroid physiologically. In this study, we have found that phosphatidylcholine carrying a linoleic acid molecule or arachidonic acid molecule has the potential to kill steroid-free H. pylori. The bactericidal action of phosphatidylcholines against H. pylori was due to the lytic activity of the phosphatidylcholines themselves and not due to the lytic activity of the unsaturated fatty acids or lyso-phosphatidylcholine resulting from the hydrolysis of the phosphatidylcholines. In contrast to the steroid-free H. pylori, the organism that absorbed and glucosylated free cholesterol was unaffected by the bactericidal action of the phosphatidylcholines. Similarly, H. pylori that absorbed estrone without glucosylating it also resisted the bactericidal action of the phosphatidylcholines. The steroids absorbed by H. pylori existed in both the outer and inner membranes, while the glucosyl-steroids produced via the steroid absorption were localized in the outer membrane rather than in the inner membrane. These results indicate that H. pylori absorbs the steroids to reinforce the membrane lipid barrier and thereby expresses resistance to the bacteriolytic action of hydrophobic compounds such as phosphatidylcholine.
In this study, we have demonstrated that Helicobacter pylori absorbs a steroid prehormone (pregnenolone) and two androgens (dehydroepiandrosterone and epiandrosterone), glucosylates these steroids, and utilizes glucosyl-steroid hormone compounds as the membrane lipid components. The only common structure among the steroid prehormone and the two androgens is a 3beta-OH in the steroid framework. Our results indicate that the 3beta-OH in the steroid hormones is a crucial conformation required for steroid glucosylation by H. pylori. In addition, we found that H. pylori absorbs and holds estrogens possessing 3-OH (estrone and estradiol) into the membrane. The effective absorption of estrogen into the membrane appeared to be controlled by the number of hydroxyl groups modifying the steroid framework. In contrast, H. pylori induced neither membrane absorption nor glucosylation of the other steroid hormones possessing 3=O (progesterone, androstenedione and testosterone) or 3alpha-OH (androsterone). These results indicate that H. pylori selectively absorbs 3beta-OH and 3-OH steroid hormones, and utilizes only 3beta-OH steroid hormones as the materials for glucosylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.