BACKGROUND & AIMS Development of nonalcoholic steatohepatitis (NASH) involves the innate immune system and is mediated by Kupffer cells and hepatic stellate cells (HSCs). Toll-like receptor 9 (TLR9) is a pattern recognition receptor that recognizes bacteria-derived cytosine phosphate guanine (CpG)–containing DNA and activates innate immunity. We investigated the role of TLR9 signaling and the inflammatory cytokine interleukin-1β (IL-1β) in steatohepatitis, fibrosis, and insulin resistance. METHODS Wild-type (WT), TLR9−/−, IL-1 receptor (IL-1R)−/−, and MyD88−/− mice were fed a choline-deficient amino acid-defined (CDAA) diet for 22 weeks and then assessed for steatohepatitis, fibrosis, and insulin resistance. Lipid accumulation and cell death were assessed in isolated hepatocytes. Kupffer cells and HSCs were isolated to assess inflammatory and fibrogenic responses, respectively. RESULTS The CDAA diet induced NASH in WT mice, characterized by steatosis, inflammation, fibrosis, and insulin resistance. TLR9−/− mice showed less steatohepatitis and liver fibrosis than WT mice. Among inflammatory cytokines, IL-1β production was suppressed in TLR9−/− mice. Kupffer cells produced IL-1β in response to CpG oligodeoxynucleotide. IL-1β but not CpG-oligodeoxynucleotides, increased lipid accumulation in hepatocytes. Lipid accumulation in hepatocytes led to nuclear factor-κB inactivation, resulting in cell death in response to IL-1β. IL-1β induced fibrogenic responses in HSCs, including secretion of tissue inhibitor of metalloproteinase-1. IL-1R−/− mice had reduced steatohepatitis and fibrosis, compared with WT mice. Mice deficient in MyD88, an adaptor molecule for TLR9 and IL-1R signaling, also had reduced steatohepatitis and fibrosis. TLR9−/−, IL-1R−/−, and MyD88−/− mice had less insulin resistance than WT mice on the CDAA diet. CONCLUSIONS In a mouse model of NASH, TLR9 signaling induces production of IL-1β by Kupffer cells, leading to steatosis, inflammation, and fibrosis.
recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2.
TGF-β–activated kinase 1 (TAK1) is a MAP3K family member that activates NF-κB and JNK via Toll-like receptors and the receptors for IL-1, TNF-α, and TGF-β. Because the TAK1 downstream molecules NF-κB and JNK have opposite effects on cell death and carcinogenesis, the role of TAK1 in the liver is unpredictable. To address this issue, we generated hepatocyte-specific Tak1 -deficient ( Tak1ΔHEP ) mice. The Tak1ΔHEP mice displayed spontaneous hepatocyte death, compensatory proliferation, inflammatory cell infiltration, and perisinusoidal fibrosis at age 1 month. Older Tak1ΔHEP mice developed multiple cancer nodules characterized by increased expression of fetal liver genes including α-fetoprotein. Cultures of primary hepatocytes deficient in Tak1 exhibited spontaneous cell death that was further increased in response to TNF-α. TNF-α increased caspase-3 activity but activated neither NF-κB nor JNK in Tak1 -deficient hepatocytes. Genetic abrogation of TNF receptor type I (TNFRI) in Tak1ΔHEP mice reduced liver damage, inflammation, and fibrosis compared with unmodified Tak1ΔHEP mice. In conclusion, hepatocyte-specific deletion of TAK1 in mice resulted in spontaneous hepatocyte death, inflammation, fibrosis, and carcinogenesis that was partially mediated by TNFR signaling, indicating that TAK1 is an essential component for cellular homeostasis in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.