We obtain isomonodromic transformations for Heun's equation by generalizing the Darboux transformation, and we find pairs and triplets of Heun's equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures that the finite-gap property is satisfied. As an application, we prove some previous conjectures in part III.
A new approach to the finite-gap property for the Heun equation is constructed. The relationship between the finite-dimensional invariant space and the spectral curve is clarified. The monodromies are calculated and are expressed as hyperelliptic integrals. Applications to the spectral problem for the BC 1 Inozemtsev model are obtained.
Using a technique based on the Yangian Gelfand-Zetlin algebra and the associated Yangian Gelfand-Zetlin bases we construct an orthogonal basis of eigenvectors in the Calogero-Sutherland Model with spin, and derive product-type formulas for norms of these eigenvectors.
We develop a theory for the Hermite-Krichever Ansatz on the Heun equation. As a byproduct, we find formulae which reduce hyperelliptic integrals to elliptic ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.