We have reported that interferon (IFN)-α can attack cancer cells by multiple antitumor mechanisms including the induction of direct cancer cell death and the enhancement of an immune response in several pancreatic cancer models. However, an immunotolerant microenvironment in the tumors is often responsible for the failure of the cancer immunotherapy. Here we examined whether the suppression of regulatory T cells (Tregs) within tumors can enhance an antitumor immunity induced by an intratumoral IFN-α gene transfer. First we showed that an intraperitoneal administration of an agonistic anti-glucocorticoid induced TNF receptor (GITR) monoclonal antibody (mAb), which is reported to suppress the function of Tregs, significantly inhibited subcutaneous tumor growth in a murine pancreatic cancer model. The anti-GITR mAb was then combined with the intratumoral injection of the IFN-α-adenovirus vector. The treatment with the antibody synergistically augmented the antitumor effect of IFN-α gene therapy not only in the vector-injected tumors but also in the vector-uninjected tumors. Immunostaining showed that the anti-GITR mAb decreased Foxp3+ cells infiltrating in the tumors, while the intratumoral IFN-α gene transfer increased CD4+ and CD8+ T cells in the tumors. Therefore, the combination therapy strongly inclined the immune balance of the tumor microenvironment in an antitumor direction, leading to a marked systemic antitumor effect. The CCR5 expression on Tregs was downregulated in the antibody-treated mice, which may explain the decrease of tumor-infiltrating Tregs. The combination of Treg-suppression by GITR mAb and the tumor immunity induction by IFN-α gene therapy could be a promising therapeutic strategy for pancreatic cancer.
Lymphopenia-induced homeostatic proliferation of T cells after autologous hematopoietic stem cell transplantation (HSCT) skews the T cell repertoire by engaging tumor-associated Ags, leading to an induction of antitumor immunity. However, how HSCT alters the immunosuppressive microenvironment in the tumors is unknown. In this study, we first analyzed the kinetics of regulatory T cells (Tregs) in the tumors after syngeneic HSCT. Unexpectedly, the frequency of CD4+ cells expressing Foxp3 was increased in the spleens, whereas the frequency was clearly decreased in the tumors after HSCT. The origin of reconstituted CD4+ and Foxp3+ cells in the tumors was mainly from the expansion of transferred splenic T cells. Then, to examine the mechanism of Treg suppression after HSCT, we isolated CD11c+ cells from tumors. A large amount of Treg-inhibitory cytokine IL-6 was secreted from the CD11c+ cells in the tumors, but not in the spleens in the recipient mice. Furthermore, to understand what factor affects the activity of CD11c+ cells in the tumors after HSCT, we analyzed the expression of various cytokines/chemokines with mouse cytokine Ab arrays, and noticed that VEGF-D concentration was increased in the tumors in the early period after HSCT. The CD11c+ cells produced IL-6 in response to VEGF-D stimulation, and an administration of VEGF receptor-3 neutralizing Ab significantly suppressed the production of IL-6 from CD11c+ cells accompanied with the increase of Tregs in the tumors of HSCT recipients. Autologous HSCT creates an environment that strongly supports the enhancement of antitumor immunity in reconstituted lymphopenic recipients through the suppression of Tregs.
Sarcoma at advanced stages remains a clinically challenging disease. Interferons (IFNs) can target cancer cells by multiple antitumor activities, including the induction of cancer cell death and enhancement of immune response. However, the development of an effective cancer immunotherapy is often difficult, because cancer generates an immunotolerant microenvironment against the host immune system. An autologous hematopoietic stem cell transplantation (HSCT) is expected to reconstitute a fresh immune system, and expand tumor-specific T cells through the process of homeostatic proliferation. Here we examined whether a combination of autologous HSCT and IFNs could induce an effective tumor-specific immune response against sarcoma. First, we found that a type I IFN gene transfer significantly suppressed the cell growth of various sarcoma cell lines, and that IFN-β gene transfer was more effective in inducing cell death than was IFN-α in sarcoma cells. Then, to examine the antitumor effect in vivo, human sarcoma cells were inoculated in immune-deficient mice, and a lipofection of an IFN-β-expressing plasmid was found to suppress the growth of subcutaneous tumors significantly. Finally, the IFN gene transfer was combined with syngeneic HSCT in murine osteosarcoma models. Intratumoral IFN-β gene transfer markedly suppressed the growth of vector-injected tumors and inhibited formation of spontaneous lung and liver metastases in syngeneic HSCT mice, and an infiltration of many immune cells was recognized in metastatic tumors of the treated mice. The treated mice showed no significant adverse events. A combination of intratumoral IFN gene transfer with autologous HSCT could be a promising therapeutic strategy for patients with sarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.