Reduced pyridine nucleotide dependent glutamate synthase [L-glutamate: NADP+ oxidoreductase (transaminating); EC 1.4.1.13] was purified to homogeneity from Bacillus subtilis PCI 219. The molecular weight of the enzyme was 210,000, and the enzyme was composed of two nonidentical subunits with molecular weights of 160,000 and 56,000. The absorption and CD spectra of the enzyme indicated that the enzyme is an iron-sulfur flavoprotein. The enzyme was found to contain 1:1:7.4:8.7 mol of FMN, FAD, iron atoms, and acid-labile sulfur atoms per mol (MW 210,000). EPR measurements of the NADPH-reduced enzyme at 77K revealed the formation of a stable flavin semiquinone intermediate; however, none of the signals originating from the iron-sulfur cluster was observed. Still at 4.2K the EPR signals in the region of g = 2, which may originate from the paramagnetic iron-sulfur cluster, were clearly observed for both the isolated and dithionite-reduced states of the enzyme. The enzyme exhibited a wide coenzyme specificity, and either NADPH or NADH could be used as electron donor, although the latter was less effective. The enzyme activity was also expressed when ammonium chloride was substituted for L-glutamine. The optimum pHs for NADPH-Gln-, NADH-Gln-, and NADPH-NH3-dependent reactions were 7.8, 6.9, and 9.4, respectively. The apoenzyme exhibited substantial inactivation of the Gln-dependent activities but still retained the NH3-dependent activities. Enzyme reduction-oxidation experiments, initial velocity experiments, and product inhibition patterns revealed that both the NADPH-Gln- and NADH-Gln-dependent reactions coincided with the two-site ping-pong uni-uni bi-bi kinetic mechanism, while the NADPH-NH3-dependent reaction deviated from Michaelis-Menten kinetics. The Gln-dependent activities were inhibited by several TCA cycle members, especially L-malate and fumarate, as well as L-methionine-SR-sulfoximine, pyridoxal-5'-phosphate, and pCMB. The regulation of the glutamate synthase, glutamine synthetase [EC 6.3.1.2], and glutamate dehydrogenase [EC 1.4.1.3] activities was examined with cultures of cells grown with various nitrogen and carbon sources.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.
Manganese ion, like Mg2+, has been found to produce high biosynthetic activity of the unadenylylated form of glutamine synthetase obtained from Mycobacterium smegmatis, and the activity with each of these cations was decreased by the adenylylation of the enzyme. Further, the gamma-glutamyltransferase reaction was catalyzed in the presence of either Mn2+, Mg2+, or Co2+ with both unadenylylated and adenylylated enzyme; however, each of these divalent cation-dependent activities was also decreased by one order of magnitude by adenylylation of the enzyme. From studies of UV-difference spectra, it was found that the ability of M. smegmatis glutamine synthetase to assume a number of distinctly different configurations was the result of the varied response of the enzyme to different cations. When either Mn2+, Mg2+, Ca2+, or Co2+ was added to the relaxed (divalent cation-free) enzyme at saturated concentration, each produced a similar UV-difference spectrum of the enzyme, indicating that the conformational states induced by these cations are similar with respect to the polarity of the microenvironment surrounding the tyrosyl and tryptophanyl groups of the enzyme. The binding of Cd2+, Ni2+, or Zn2+ to the relaxed enzyme each produced a different shift in the UV-absorption spectrum of the enzyme, indicating different conformational states. The kinetics of the spectral change that occurred upon addition of Mn2+, Mg2+, or Co2+ to a relaxed enzyme preparation were determined. The first-order rate constants for the decrease in relaxed enzyme with Mn2+ and Mg2+ were 0.604 min-1 and 0.399 min-1, respectively, at 25 degrees C, pH 7.4. The spectral change with Co2+ was completed within the time of mixing (less than 4 s). For these three metal ions, the total spectral change as well as the time course of the change were the same for both the unadenylylated enzyme and the partially adenylylated enzyme. However, Hill coefficients obtained from spectrophotometric titration data for both Mn2+ and Mg2+ were decreased with adenylylated enzyme to compared with unadenylylated enzyme. These results suggest that covalently bound AMP on each subunit may be involved in subunit interactions within the dodecamer. Circular dichroism measurements also indicated that the various structural changes of the M. smegmatis glutamine synthetase were produced by the binding of the divalent cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.