Eigencalculation is a challenging task in large-scale power systems with high power electronics penetration for at least two reasons. First, the well-known inter-area modes are no longer the only coupling modes as such couplings may involve also power converters. Next, it is difficult to find all coupling modes without a priori knowledge about them (frequency or path of oscillation). In this paper we propose a new method to overcome these difficulties. It is fully analytic, i.e., does not need operator manipulations like dynamic simulations, and it is exhaustive in the sense that makes a full scan of the system for coupling modes. The approach involves concepts from matrix computation and dynamic systems analysis which hold in largescale and need no hypothesis (like the one about large inertia generators usually associated to inter-area modes) or knowledge about the structure of the power system. Validations on several models are presented, including realistic large-scale model (more than 1000 generators/dynamic devices) of the European power system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.