By using CNFET technology in 3a 2 nm node using a proposed SQI gate, two split bit-lines QSRAM architectures have been suggested to address the issue of increasing demand for storage capacity in IoT/IoVT applications. Peripheral circuits such as a novel quaternary to binary decoder for QSRAM have been offered. Various simulations on temperature, supply voltage, and access frequency have been done to evaluate and ensure the performance of the proposed SQI gate, suggested cells, and quaternary to binary decoder. Moreover, 1000 Monte-Carlo analyses on the fabrication parameters have been done to classify read and write delay and standby power of proposed cells along with PDP of proposed quaternary to binary decoder. It is worth mentioning that the PDP of the proposed SQI gate, decoder, and average power consumption of suggested HF-QSRAM cell reached 0.92 aJ, 4.13 aJ, and 0.15 µW, respectively, which are approximately 80%, 91%, and 33% improvements in comparison with the best existing designs in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.