A conserved iron-binding site, the ferroxidase center, regulates the vital iron storage role of the ubiquitous protein ferritin in iron metabolism. It is commonly thought that two Fe(II) simultaneously bind the ferroxidase center and that the oxidized Fe(III)-O(H)-Fe(III) product spontaneously enters the cavity of ferritin as a unit. In contrast, in some bacterioferritins and in archaeal ferritins a persistent di-iron prosthetic group in this center is believed to mediate catalysis of core formation. Using a combination of binding experiments and isotopically labeled (57)Fe(II), we studied two systems in comparison: the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus (PfFtn) and the eukaryotic human H ferritin (HuHF). The results do not support either of the two paradigmatic models; instead they suggest a unifying mechanism in which the Fe(III)-O-Fe(III) unit resides in the ferroxidase center until it is sequentially displaced by Fe(II).
A highly conserved tyrosine residue of unknown function is present in the vicinity of the di-iron catalytic center of the ubiquitous iron-storage protein ferritin. The di-iron center with a gateway FeII/FeIII-binding site nearby provides the vital iron-storage mechanism of the protein. It is believed that, in eukaryotic ferritin, this center catalyzes simultaneous oxidation of two FeII ions, whereas in microbial ferritin it catalyzes simultaneous oxidation of three FeII ions. To understand the role of the conserved tyrosine, we studied the intermediates and products that are formed during catalysis of FeII oxidation in the di-iron catalytic centers of the hyperthermophilic archaeal Pyrococcus furiosus ferritin and of eukaryotic human H ferritin. Based on our spectroscopic studies and modeling, we propose a merger of the models for eukaryotic and bacterial ferritin into a common mechanism of FeII oxidation in which the conserved tyrosine acts as a single-electron molecular capacitor to facilitate oxidation of FeII.
Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.