In this work, N 2 adsorption was employed to investigate the effects of carbon support, platinum, and ionomer loading on the microstructure of polymer electrolyte membrane fuel cell catalyst layers (CLs). Brunauer-Emmett-Teller and t-plot analyses of adsorption isotherms and pore-size distributions were used to study the microstructure of carbon supports, platinum/carbon catalyst powders, and three-component platinum/carbon/ionomer CLs. Two types of carbon supports were chosen for the investigation: Ketjen Black and Vulcan XC-72. CLs with a range of Nafion ionomer loadings were studied in order to evaluate the effect of an ionomer on the CL microstructure. Regions of adsorption were differentiated into micropores associated with the carbon primary particles (<2 nm), mesopores ascribed to the void space inside agglomerates (2-20 nm), and meso-to macroporous space inside aggregates of agglomerates (>50 nm). Ketjen Black was found to possess a significant fraction of micropores, 25% of the total pore volume, in contrast to Vulcan XC-72, for which the corresponding fraction of micropores was 15% of the total pore volume. The microstructure of the carbon support was found to be a significant factor in the formation of the microstructure in the three-component CLs, serving as a rigid porous framework for distribution of platinum and the ionomer. It was found that platinum particle deposition on Ketjen Black occurs in, or at the mouth of, the support's micropores, thus affecting its effective microporosity, whereas platinum deposition on Vulcan XC-72 did not significantly affect the support's microstructure. The codeposition of ionomer in the CL strongly influenced its porosity, covering pores < 20 nm, which are ascribed to the pores within the primary carbon particles (pore sizes < 2 nm) and to the pores within agglomerates of the particles (pore sizes of 2-20 nm).
Understanding the factors that control microstructure formation in catalyst layers (CLs) of polymer electrolyte fuel cells is of vital importance for improving the operation of these cells. Here, we employ, for the first time, coarse-grained molecular dynamics simulations to perform a structural analysis of the microphase segregation occurring during the fabrication process of CLs. Our mesoscale simulations provide insights into the structural correlations and dynamical behavior of different phases in the catalyst layer composite. This versatile computational study, moreover, rationalizes how the solvent used in catalyst layer fabrication influences the evolution of stable agglomerated conformations. In this realm, we evaluate dispersion media with distinct dielectric properties in view of capabilities for controlling the sizes of carbon/Pt agglomerates and ionomer domains and the resulting pore network topology. These insights are highly valuable for the structural design of catalyst layers with optimized performance and stability.
The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.