General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
High-tech companies are struggling today with the maintenance of legacy software. Legacy software is vital to many organizations as it contains the important business logic. To facilitate maintenance of legacy software, a comprehensive understanding of the software’s behavior is essential. In terms of component-based software engineering, it is necessary to completely understand the behavior of components in relation to their interfaces, i.e., their interface protocols, and to preserve this behavior during the maintenance activities of the components. For this purpose, we present an approach to infer the interface protocols of software components from the behavioral models of those components, learned by a blackbox technique called active (automata) learning. To validate the learned results, we applied our approach to the software components developed with model-based engineering so that equivalence can be checked between the learned models and the reference models, ensuring the behavioral relations are preserved. Experimenting with components having reference models and performing equivalence checking builds confidence that applying active learning technique to reverse engineer legacy software components, for which no reference models are available, will also yield correct results. To apply our approach in practice, we present an automated framework for conducting active learning on a large set of components and deriving their interface protocols. Using the framework, we validated our methodology by applying active learning on 202 industrial software components, out of which, interface protocols could be successfully derived for 156 components within our given time bound of 1 h for each component.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In this note, we report on a half-day tutorial designed to introduce software architecture practitioners and researchers to the concepts and open-source implementations of blended modeling for software architectures. The tutorial covered blended modeling motivation and principles, generation of editors, generation of the synchronization infrastructure, and collaborative modeling techniques. Through presentations, examples, and demonstrations, participants explored the practical implementation of blended modeling environments that can be tailored to their specific needs. The note provides a detailed account of the tutorial sessions, including the main implications of a focus group discussion held in the final session of the tutorial. In the follow-up to the tutorial, we conducted a survey to assess participants' perceptions of blended modeling's usefulness within their contexts. Post-tutorial actions and survey results are discussed as well, providing valuable insight into the benefits and potential challenges associated with the adoption of blended modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.