Pathogenic free-living amoebae (FLA), such as Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba species isolated from aquatic environments have been implicated in central nervous system, eye and skin human infections. They also allow the survival, growth and transmission of bacteria such as Legionella, Mycobacteria and Vibrio species in water systems. The purpose of this study was to investigate the co-occurrence of potentially pathogenic FLA and their associated bacteria in hospital water networks in Johannesburg, South Africa. A total of 178 water (n = 95) and swab (n = 83) samples were collected from two hospital water distribution systems. FLA were isolated using the amoebal enrichment technique and identified using PCR and 18S rDNA sequencing. Amoebae potentially containing intra-amoebal bacteria were lysed and cultured on blood agar plates. Bacterial isolates were characterized using the VITEK®2 compact System. Free-living amoebae were isolated from 77 (43.3 %) of the samples. Using microscopy, PCR and 18S rRNA sequencing, Acanthamoeba spp. (T3 and T20 genotypes), Vermamoeba vermiformis and Naegleria gruberi specie were identified. The Acanthamoeba T3 and T20 genotypes have been implicated in eye and central nervous system infections. The most commonly detected bacterial species were Serratia marcescens, Stenotrophomonas maltophilia, Delftia acidovorans, Sphingomonas paucimobilis and Comamonas testosteroni. These nosocomial pathogenic bacteria are associated with systematic blood, respiratory tract, the urinary tract, surgical wounds and soft tissues infections. The detection of FLA and their associated opportunistic bacteria in the hospital water systems point out to a potential health risk to immune-compromised individuals.
Quantifying pathogenic genes with q-PCR in complex samples to determine the pathogen loads is influenced by a wide range of factors, including choice of extraction method, standard curve, and the decision to use relative versus absolute quantification of the genes. The aim was to investigate the standardisation of q-PCR methods to determine enumerated E. coli gene ratios grown with the IDEXX Colilert® Quanti-Trays® using enteropathogenic E. coli as the model pathogen. q-PCR targeting the eaeA and gadAB genes was used to calculate the eaeA: gadAB ratios for clinical strains collected between [2005–2006 (n = 55)] and [2008–2009 (n = 19)] using the LinRegPCR software and Corbett Research Thermal cycler software. Both programs grouped the isolates into two distinct groups based on the gene ratios although the Corbett Research Thermal cycler software gave results one log higher than the LinRegPCR program. Although the eaeA: gadAB ratio range was determined using extracted E. coli DNA, the impact of free DNA and other bacteria present in the sample needed to be understood. Standard curve variations using serially diluted extracted E. coli DNA, serially diluted pure E. coli culture followed by DNA extraction from each dilution with or without other bacteria was tested using the eaeA q-PCR to quantify the genes. Comparison of the standard curves showed no significant difference between standard curves prepared with diluted DNA or with cells diluted before the DNA is extracted (P = 0.435). Significant differences were observed when background DNA was included in the diluent or Coliform cells added to the diluent to dilute cells before the DNA is extracted (P < 0.001). The “carrier” DNA and Coliform cells enhanced the DNA extraction results resulting in better PCR efficiency. This will have an influence on the quantification of gene ratios and pathogen load in samples containing lower numbers of E. coli.
River water quality is an important health issue as the water is utilised for drinking, domestic and agricultural use in developing countries. This study aimed to investigate the effect water from a major city has on the water quality of the Jukskei River that daylights in Johannesburg, South Africa. The river water samples were analysed for physio-chemical properties, microbiology, antibiotic resistance of bacterial isolates, genetic markers, and potentially toxic metals. Data analysis revealed increased electrical conductivity, total dissolved solids, and turbidity since 2010. Total Coliform and Escherichia coli detected were above the South African water quality guidelines for domestic, recreational, and irrigation purposes. Additionally, sodium, zinc, nickel, lithium, and lead exceeded the guidelines in domestic, recreational, and irrigation water. Pathogenic strains of E. coli (aEPEC, EHEC, EIEC, and EAEC) were isolated from the water. Various other potentially pathogenic organisms that have been implicated as causes of gastro-intestinal, and a wide range of other diseases, were also detected and demonstrated multiple levels of resistance to antibiotics tested. The results show that the river water is a potential health threat to downstream users. These results will feed into the environmental management action plan for Water for the Future (NGO group).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.