We present a new approach for peptide cyclization during solid phase synthesis under highly acidic conditions. Our approach involves simultaneous in situ deprotection, cyclization and trifluoroacetic acid (TFA) cleavage of the peptide, which is achieved by forming an amide bond between a lysine side chain and a succinic acid linker at the peptide N-terminus. The reaction proceeds via a highly active succinimide intermediate, which was isolated and characterized. The structure of a model cyclic peptide was solved by NMR spectroscopy. Theoretical calculations support the proposed mechanism of cyclization. Our new methodology is applicable for the formation of macrocycles in solid-phase synthesis of peptides and organic molecules.
We describe a new general N-acetylation method for solid phase synthesis. Malonic acid is used as a precursor and the reaction proceeds by in situ formation of a reactive ketene intermediate at room temperature. We have successfully applied this methodology to peptides and non-peptidic molecules containing a variety of functional groups. The reaction gave high yields compared to known acetylation methods, irrespective of the structure, conformation and sequence of the acetylated molecule. Computational studies revealed that the concerted mechanism via the ketene intermediate is kinetically favorable and leads to a thermodynamically stable acetylated product. In conclusion, our method can be easily applied to acetylation in a wide variety of chemical reactions performed on the solid phase.
We present a new approach for the covalent inhibition of HIV-1 integrase (IN) by an LEDGF/p75-derived peptide modified with an N-terminal succinimide group. The covalent inhibition is mediated by direct binding of the succinimide to the amine group of a lysine residue in IN. The peptide serves as a specific recognition sequence for the target protein, while the succinimide serves as the binding moiety. The combination of a readily synthesizable peptide precursor with easy and efficient binding to the target protein makes this approach a promising new strategy for designing lead compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.