ABSTRACT. A necessary and sufficient condition that a vector f is an antieigenvector of a strictly accretive operator A is obtained. The structure of antieigenvectors of selfadjoint and certain class of normal operators is also found in terms of eigenvectors. The Kantorovich inequality for selfadjoint operators and the Davis's inequality for normal operators are then easily deduced. A sort of uniqueness is also established for the values of Re(Af,f) and IIAfll if the first antieigenvalue, which is equal to min Re(Af,f)/(llAfllllfll) is attained at the unit vector f.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.