This paper presents the JU-USAAR English-German domain adaptive machine translation (MT) system submitted to the IT domain translation task organized in WMT-2016. Our system brings improvements over the in-domain baseline system by incorporating out-domain knowledge. We applied two methodologies to accelerate the performance of our in-domain MT system: (i) additional training material extraction from out-domain data using data selection method, and (ii) language model and translation model adaptation through interpolation. Our primary submission obtained a BLEU score of 34.5 (14.5 absolute and 72.5% relative improvements over baseline) and a TER score of 54.0 (14.7 absolute and 21.4% relative improvements over baseline).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.