A current goal for microactuators is to extend their usually small working ranges, which typically result from mechanical connections and restoring forces imposed by cantilevers. In order to overcome this, we present a bistable levitation setup to realise free vertical motion of a magnetic proof mass. By superimposing permanent magnetic fields, we imprint two equilibrium positions, namely on the ground plate and levitating at a predefined height. Energy-efficient switching between both resting positions is achieved by the cooperation of a piezoelectric stack actuator, initially accelerating the proof mass, and subsequent electromagnetic control. A trade-off between robust equilibrium positions and energy-efficient transitions is found by simultaneously optimising the controller and design parameters in a co-design. A flatness-based controller is then proposed for tracking the obtained trajectories. Simulation results demonstrate the effectiveness of the combined optimisation.
We present the prototype and analytical model of a miniaturized impact actuation mechanism, providing a fast out-of-plane displacement to accelerate objects against gravity, allowing for freely moving objects and hence for large displacements without the need for cantilevers. To achieve the necessary high speed, we chose a piezoelectric stack actuator driven by a high-current pulse generator, connected to a rigid support and a rigid three-point contact with the object. We describe this mechanism with a spring-mass model and compare various spheres with different masses and diameters and from different materials. As expected, we found that larger flight heights are achieved by harder spheres, achieving, e.g., approx. 3 mm displacement for a 3 mm steel sphere using a 3 × 3 × 2 mm3 piezo stack.
We present the prototype and analytical model of a miniaturized impact actuation mechanism, providing a fast out-of-plane displacement to accelerate objects against gravity, allowing for freely moving objects and hence for large displacements without the need of cantilevers. To achieve the necessary high speed, we chose a piezo electric stack actuator driven by a high-current pulse generator, connected to a rigid support and a rigid three-point contact with the object. We describe this mechanism with a spring-mass model and compare various inertial masses, all of them spheres, from different diameters and materials. As expected, we found that larger flight heights are achieved by harder projectiles, achieving, e.g., approx. 3 mm displacement for a 3 mm steel sphere using a 3x3x2 mm³ piezo stack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.