Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The aim of this study was to evaluate the quality of long-term cryopreserved umbilical cord blood (CB) units for hematopoietic cell transplantation (HCT). The recovery of the number of total nucleated cell (TNC), hematopoietic progenitor cells (HPCs; CD34+ cells, colony-forming units-granulocyte/macrophages [CFU-GMs]), and the percentage of viable cells, CD34+ CD38- cells, and CD34+ CXCR4+ cells of CB units cryopreserved for 10 years for HCT were examined. Eighteen CB units cryopreserved for 10 years (as the study group) and for 1 month (as the control group), respectively, were analyzed. The recovery rate of TNC, CD34+ cells and CFU-GMs were 88.72 ± 16.40, 68.39 ± 18.37 and 42.28 ± 38.16% for the study group and 80.17 ± 14.46, 72.67 ± 20.38 and 49.61 ± 36.39% for the control group (p = 0.106, p = 0.513 and p = 0.559, respectively). There were no significant differences in the recovery rate of TNC, CD34+ cells and CFU-GMs between the study group and the control group. The mean basal percentage of viable cells, CD34+ CD38- cells, and CD34+ CXCR4+ cells after thawing were 83.69 ± 9.45, 9.11 ± 4.13 and 81.65 ± 10.82% for the study group. These results indicate that long-term cryopreservation does not negatively affect the quality of CB units for HCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.