The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by the combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit background based on a combination of new techniques, including the concept of a well-type active shield counter. With an effective area of $142 \,\mathrm{cm}^{2}$ at 20 keV and $273 \,\mathrm{cm}^{2}$ at 150 keV, the background level at sea level reached $\sim 1 \times 10^{-5} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 30 keV for the PIN diodes, and $\sim 2 \times 10^{-5} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 100 keV, and $\sim 7 \times 10^{-6} \,\mathrm{cts} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{keV}^{-1}$ at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of $\sim 4 \,\mathrm{cm}$ thick BGO crystals, have a large effective area for sub-MeV to MeV $\gamma$-rays. They work as an excellent $\gamma$-ray burst monitor with limited angular resolution ($\sim 5^{\circ}$). The on-board signal-processing system and the data transmitted to the ground are also described.
Abstract-We are developing a Compton camera based on Si and CdTe semiconductor imaging devices with high energy resolution. In this paper, results from the most recent prototype are reported. The Compton camera consists of six layered doublesided Si Strip detectors and CdTe pixel detectors, which are read out with low noise analog ASICs, VA32TAs. We obtained Compton reconstructed images and spectra of line gamma-rays from 122 keV to 662 keV. The energy resolution is 9.1 keV and 14 keV at 356 keV and 511 keV, respectively.
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.