Estimation of human age is important in the fields of forensic medicine and the detection of neurodegenerative diseases of the brain. Particularly, the age estimation methods using brain magnetic resonance (MR) images are greatly significant because these methods not only are noninvasive but also do not lead to radiation exposure. Although several age estimation methods using brain MR images have already been investigated using deep learning, there are no reports involving younger subjects such as children. This study investigated the age estimation method using T1-weighted (sagittal plane) two-dimensional brain MR imaging (MRI) of 1000 subjects aged 5–79 (31.64 ± 18.04) years. This method uses a regression model based on ResNet-50, which estimates the chronological age (CA) of unknown brain MR images by training brain MR images corresponding to the CA. The correlation coefficient, coefficient of determination, mean absolute error, and root mean squared error were used as the evaluation indices of this model, and the results were 0.9643, 0.9299, 5.251, and 6.422, respectively. The present study showed the same degree of correlation as those of related studies, demonstrating that age estimation can be performed for a wide range of ages with higher estimation accuracy.
Although the widespread use of digital imaging has enabled real-time image display, images in chest X-ray examinations can be confirmed by the radiologist’s eyes. Considering the development of deep learning (DL) technology, its application will make it possible to immediately determine the need for a retake, which is expected to further improve examination throughput. In this study, we developed software for evaluating chest X-ray images to determine whether a repeat radiographic examination is necessary, based on the combined application of DL technologies, and evaluated its accuracy. The target population was 4809 chest images from a public database. Three classification models (CLMs) for lung field defects, obstacle shadows, and the location of obstacle shadows and a semantic segmentation model (SSM) for the lung field regions were developed using a fivefold cross validation. The CLM was evaluated using the overall accuracy in the confusion matrix, the SSM was evaluated using the mean intersection over union (mIoU), and the DL technology-combined software was evaluated using the total response time on this software (RT) per image for each model. The results of each CLM with respect to lung field defects, obstacle shadows, and obstacle shadow location were 89.8%, 91.7%, and 91.2%, respectively. The mIoU of the SSM was 0.920, and the software RT was 3.64 × 10−2 s. These results indicate that the software can immediately and accurately determine whether a chest image needs to be re-scanned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.