MicroRNA (miRNA) expression is frequently altered in human cancers. To search for epigenetically silenced miRNAs in nonsmall-cell lung cancer (NSCLC), we mapped human miRNAs on autosomal chromosomes and selected 55 miRNAs in silico. We treated six NSCLC cell lines with the DNA methylation inhibitor 5-aza-2 0 -deoxycytidine (5-aza-CdR) and determined the expressions of the 55 miRNAs. Fourteen miRNAs were decreased in the cancer cell lines and were induced after 5-aza-CdR treatment. After a detailed DNA methylation analysis, we found that mir-34b and mir-126 were silenced by DNA methylation. Mir-34b was silenced by the DNA methylation of its own promoter, whereas mir-126 was silenced by the DNA methylation of its host gene, EGFL7. A chromatin immunoprecipitation assay revealed H3K9me2 and H3K9me3 in mir-34b and EGFL7, and H3K27me3 in EGFL7. The overexpression of mir-34b and mir-126 decreased the expression of c-Met and Crk, respectively. The 5-aza-CdR treatment of lung cancer cell line resulted in increased mir-34b expression and decreased c-Met protein. We next analyzed the DNA methylation status of these miRNAs using 99 primary NSCLCs. Mir-34b and mir-126 were methylated in 41 and 7% of all the cases, respectively. The DNA methylation of mir-34b was not associated with c-Met expression determined by immunohistochemistry, but both mir-34b methylation (p 5 0.007) and c-Met expression (p 5 0.005) were significantly associated with lymphatic invasion in a multivariate analysis. The DNA methylation of mir-34b can be used as a biomarker for an invasive phenotype of lung cancer.MicroRNAs (miRNAs) are broadly conserved small noncoding RNA that regulate gene expression by binding to the 3 0 UTR of target mRNAs in a complementary manner. 1Through the posttranscriptional regulation of many target genes, miRNAs are involved in many biological processes, such as development and human carcinogenesis. MicroRNA expression is altered in human cancers, and some miRNAs have oncogenic or tumor suppressive functions in human malignancies, including lung cancer. 2-5Chromosomal deletions or amplifications are important mechanisms of miRNA expression change in cancers. For example, mir-15 and mir-16 are frequently deleted and downregulated in chronic lymphocytic leukemia.2 The mir-17-92 miRNA cluster is amplified and overexpressed in B-cell lymphoma 6 and lung cancer. 4 However, the precise mechanisms responsible for changes in miRNA expression in cancer remain largely unknown.DNA methylation plays an important role in inactivating tumor suppressor genes in many types of human cancers. 7,8 Recently, DNA methylation in cancerous tissue has been shown to cause the silencing of miRNAs located in the vicinity of CpG islands. 9,10 As the epigenetic silencing of tumor suppressor genes is a common event in lung carcinogenesis 11-14 and miRNA expression is altered in lung cancer, 5 we decided to search for epigenetically silenced miRNAs in lung cancer.In our study, we selected 55 candidate miRNAs in silico based on the genome structure and tre...
Epigenetic changes can lead to abnormal expression of genes in cancer, and several genes have been reported to have aberrant promoter DNA methylation in non-small-cell lung cancer (NSCLC). We identified aberrantly methylated genes in NSCLC by combination of in silico and experimental approaches. We first applied bioinformatics, and from microarray datasets, we selected genes with low expression and having functions related to cancer. Next, combined bisulfite restriction analysis was carried out in 10 pooled resected lung cancer tissues to screen for genes that were aberrantly methylated, and the methylation ratio (the fraction of methylated DNA in extracted DNA from a cancer tissue sample) was quantified using quantitative analysis of methylated alleles. We identified 8 methylated genes (ARPC1B, DNAH9, FLRT2, G0S2, IRS2, PKP1, SPOCK1 and UCHL1) previously unreported in NSCLC. Analyses of methylation profiles of 101 resected lung cancer tissue samples revealed quantitatively low methylation in whole, methylation ratios were almost less than 30% even in the methylated samples, and no significant correlation to prognosis after 2 years of follow-up using hierarchical clustering. DNA methylation of G0S2 gene was significantly more frequent in squamous lung cancer (n 5 18, mean of methylation ratios: 15%) compared with nonsquamous lung cancer (n 5 83, mean of methylation ratios: 2.6%) (Mann-Whitney U test, p < 0.001). DNA methylation of G0S2 can be an important biomarker for squamous lung cancer.
We investigated whether the CpG island methylation of certain microRNAs was associated with the clinicopathological features and the prognosis of non-small-cell lung cancer. The methylation of mir-152, -9-3, -124-1, -124-2, and -124-3 was analyzed in 96 nonsmall-cell lung cancer specimens using a combined bisulfite restriction analysis. The median observation period was 49.5 months. The methylation of mir-9-3, -124-2, and -124-3 was individually associated with an advanced T factor independent of age, sex, and smoking habit. Moreover, the methylation of multiple microRNA loci was associated with a poorer progression-free survival in a univariate analysis. Our result enlightens the accumulation of aberrant DNA methylation which occurs in concordance with the tumor progression. (Cancer Sci 2011; 102: 2126-2131 L ung cancer is the leading cause of cancer-related mortality in the world,(1) and non-small-cell lung cancer (NSCLC) is the most common type. Surgical resection remains the only curative treatment for NSCLC. Identifying factors that are associated with aggressive disease may lead to the development of novel biomarkers and the identification of therapeutic targets that can help reduce the burden of this disease.MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate target gene expression by accelerating the degradation of mRNA and translational inhibition, with potentially hundreds of target mRNAs.(2) They influence a variety of cellular functions including proliferation, differentiation, and apoptosis.(3) Specific miRNAs can behave as either tumor suppressor genes or oncogenes, depending on the tissue type and the presence of specific targets. (4,5) More than 100 species of known miRNAs are embedded within or near the CpG islands of the human genome and are potentially subject to control by epigenetic alterations such as DNA methylation and histone modification. Systematic assessments of miRNA expression and epigenetic modifications among cell lines and primary tumor specimens have revealed the existence of the epigenetic regulation of miRNAs in multiple tumor types. (6)(7)(8)(9) The goals of this study were to explore possible relationships between the methylation profiles of miRNAs and the clinicopathological characteristics of NSCLC patients and to identify new specific methylation markers capable of detecting advanced pathological features.In the present study, the methylation status of five miRNA loci within five separate CpG islands was determined in 96 NSCLC tissue specimens. The choice of the miRNAs was based on our previous study (9) as well as other published reports. (10,11) Our data show that the CpG island methylation of miRNAs is common in NSCLC, and that the methylation of multiple miR-NA loci is associated with an advanced T status as well as the progression-free survival (PFS) of patients with NSCLC. Materials and MethodsPatients. We collected cancer tissues and normal lung tissues from NSCLC patients who underwent surgical resection at the University of Tokyo Hosp...
Alternative polyadenylation (APA), which induces shortening of the 3′UTR, is emerging as an important phenomenon in gene regulation. APA is involved in development, cancer and cell proliferation. APA may lead to disruption of microRNA-mediated gene silencing in cancer cells via detachment of microRNA binding sites. We studied the correlation between the APA profile and the tumor aggressiveness in cases of lung cancer. We selected the top 10 genes showing significant 3′UTR shortening in lung cancer, using the package of the Bioconductor for probe-level analyses of expression microarrays. We established and evaluated the APA score by quantitative RT-PCR in 147 clinical specimens of non-small cell lung cancer and compared the results with the clinical outcomes and expression levels of APA-related genes, including PABPN1, CPEB1, E2F1 and proliferation markers (MKI67, TOP2A and MCM2). High APA scores were correlated with an advanced tumor stage and a poor prognosis (P < 0.001). Multivariate analysis identified the APA score as an independent prognostic factor (hazard ratio, 3.0; P = 0.03). Both lower expression of PABPN1 and higher expression of the proliferation markers were correlated with high APA scores and a poor prognosis, with suppression of PABPN1 exerting its influence independent of gain of the proliferation markers. Moreover, the APA score was correlated with the maximum standardized uptake value of the tumors on positron emission tomography (r = 0.53; P < 0.001). Our results indicate that the loss of PABPN1, a suppressor of APA, might promote tumor aggressiveness by releasing the cancer cells from microRNA-mediated gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.