In this study, we found that nuclear receptors FXR and LXR (originally characterized as regulatory factors involved in cholesterol/bile acid homeostasis) regulate the expression of Oct3/4, a marker for cell differentiation, in both normal renal-derived cell line HK-2 and renal adenocarcinoma cell line ACHN. Down-regulation of Oct3/4 expression by activating FXR and LXR occurs only in normal renal cell-derived HK-2 cells. We also found that the RNA-binding protein, ELAVL2, oppositely regulates Oct3/4 expressions in HK-2 and ACHN cells. Moreover, we revealed that LXR-alpha and LXR-beta regulate each other's expression. Although an LXR-beta-specific agonist is assumed to be the basis for an anti-arteriosclerotic drug that only stimulates reverse cholesterol transport, our findings show that the development of such an anti-arteriosclerotic drug would require further elucidation of the complex mechanism of LXR-alpha and LXR-beta regulation.
Liver X receptor (LXR)-alpha and LXR-beta are nuclear receptors activated by oxysterols. They exhibit differential expression patterns and may perform different functional roles. Here we show that LXR-alpha and LXR-beta mutually regulate the expression levels of their counter parts in the normal hepatocyte-derived cell line Fa2N-4. In addition, we demonstrate that ouabagenin (OBG), which was identified as a naturally occurring LXR ligand without causing hepatic steatosis, dramatically increases the expression of LXR-alpha in Fa2N-4 cells that overexpress LXR-beta. However, the expression level of sterol response element binding protein 1c (SREBP-1c), a known target of LXR-alpha, remains marginal in OBG-treated Fa2N-4 cells, in which LXR-alpha expression is upregulated by LXR-beta. Furthermore, we show that OBG stimulates the expression of Krüppel-like factor 15 (KLF15) that is known to form a repressive complex with LXR/RXR and corepressor RIP140, thereby reducing SREBP-1c expression. Thus, we propose a novel mechanism that OBG avoids the increase in the expression of SREBP-1c through the upregulation of KLF15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.