The gene encoding organophosphorus hydrolase (OPH) from Flavobacterium species was expressed on the cell surface of Saccharomyces cerevisiae MT8-1 using a glycosylphosphatidylinositol (GPI) anchor linked to the C-terminal region of OPH. Immunofluorescence microscopy confirmed the localization of OPH on the cell surface, and fluorescence intensity measurement of cells revealed that 1.4 x 10(4) molecules of OPH per cell were displayed. Seventy percent of OPH whole-cell activity was detected on the cell surface by protease accessibility assay. The activity of OPH was highly dependent on cell growth conditions. The maximum activity was obtained when cells were grown in a synthetic dextrose medium lacking tryptophan (SD-W) buffered by 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES, 200 mM, pH 7.0) at 20 degrees C, and cobalt chloride was added at 0.1 mM. S. cerevisiae MT8-1 displaying OPH which exhibited a higher activity than Escherichia coli displaying OPH using the ice nucleation protein (INP) anchor. The use of S. cerevisiae MT8-1, which has a "generally regarded as safe (GRAS)" status, as a host for the easy expression of the OPH gene provides a new biocatalyst useful for simultaneous detoxification and detection of organophosphorus pesticides.
Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30°C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold greater OPH activity compared with cells engineered using glycosylphosphatidylinositol anchor system, and showed 20-fold greater activity than Escherichia coli using the ice nucleation protein anchor system. These results indicate that Flo1p anchor system is suitable for display of OPH in the cell surface-expression systems.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30 degrees C. In addition, with 20 mM paraoxon at 30 degrees C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.