Anti-dengue virus immunoglobulin M kits were evaluated. Test sensitivities were 21%-99% and specifi cities were 77%-98% compared with reference ELISAs. False-positive results were found for patients with malaria or past dengue infections. Three ELISAs showing strong agreement with reference ELISAs will be included in the World Health Organization Bulk Procurement Scheme.
dCryptosporidiosis, a diarrheal disease usually caused by Cryptosporidium parvum or Cryptosporidium hominis in humans, can result in fulminant diarrhea and death in AIDS patients and chronic infection and stunting in children. Nitazoxanide, the current standard of care, has limited efficacy in children and is no more effective than placebo in patients with advanced AIDS. Unfortunately, the lack of financial incentives and the technical difficulties associated with working with Cryptosporidium parasites have crippled efforts to develop effective treatments. In order to address these obstacles, we developed and validated (Z= score ؍ 0.21 to 0.47) a cell-based high-throughput assay and screened a library of drug repurposing candidates (the NIH Clinical Collections), with the hopes of identifying safe, FDA-approved drugs to treat cryptosporidiosis. Our screen yielded 21 compounds with confirmed activity against C. parvum growth at concentrations of <10 M, many of which had well-defined mechanisms of action, making them useful tools to study basic biology in addition to being potential therapeutics. Additional work, including structure-activity relationship studies, identified the human 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor itavastatin as a potent inhibitor of C. parvum growth (50% inhibitory concentration [IC 50 ] ؍ 0.62 M). Bioinformatic analysis of the Cryptosporidium genomes indicated that the parasites lack all known enzymes required for the synthesis of isoprenoid precursors. Additionally, itavastatin-induced growth inhibition of C. parvum was partially reversed by the addition of exogenous isopentenyl pyrophosphate, suggesting that itavastatin reduces Cryptosporidium growth via on-target inhibition of host HMG-CoA reductase and that the parasite is dependent on the host cell for synthesis of isoprenoid precursors.
Dengue virus (DENV) nonstructural protein 1 (NS1) has shown promise as a novel diagnostic marker of acute DENV infection. Current techniques used to diagnose acute DENV infection, including virus isolation and reverse transcription-PCR (RT-PCRPredictive models were constructed to identify factors that had a significant influence on a test's outcome with respect to this panel of samples in order to identify the conditions in which the test will be most effective as a diagnostic tool. The immunoglobulin G titer was found to be the only covariate that significantly influenced results in the Bio-Rad test, while serotype and the day postonset were found to significantly influence results in the Panbio test. We concluded that the NS1 capture ELISA is a useful tool that can improve testing algorithms to diagnose DENV infection in single samples from acute and early convalescent cases.Dengue viruses (DENVs) are members of the genus Flavivirus in the family Flaviviridae and exist as four antigenically distinct viruses. While most infections result in asymptomatic responses or mild febrile illness (dengue fever), all four serotypes are capable of producing the more severe, and sometimes fatal, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (10,12,28). Over the last 50 years, factors such as rapid urbanization and failure to control vector mosquitoes have led to the emergence of endemic dengue in over 100 countries. With 2.5 billion people at risk for infection, DENV has become the most important arthropod-borne virus affecting humans (11,13,34).Current diagnostic methods are often unable to recognize emerging epidemics in a timely manner or at a reasonable cost, drastically reducing the efficacy of control measures (13, 34). Virus isolation is a lengthy process which requires specialized laboratory equipment (29, 32), and rapid antibody responses to DENV in secondary infections may prevent successful isolation from serum drawn as few as 3 days after the onset of fever (17,28,29,32). The development and modification of nested reverse transcription-PCR (RT-PCR) (16, 21) as well as realtime 8,30,31) techniques have significantly reduced processing times; however, these procedures remain expensive and technically difficult, and laboratory contamination can yield false-positive results. Serological diagnosis offers many advantages, including more flexible schedules for testing, a lower cost, and more widely available reagents (32). However, cross-reactivity between other flaviviruses and "original antigenic sin" complicate specific diagnosis of secondary flavivirus infections (15,17,28,32). Additionally, antibody halflives of up to 2 months confound diagnosis in cases where the date of onset of illness is unknown (17,28,29).The inability of serologic methods to reliably diagnose acute infections has been recognized as a serious impediment to quick detection of epidemics and effective clinical case management (34). A number of options are being explored to overcome this obstacle; one of the most promising is the detec...
Cryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drive in vivo efficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound for Cryptosporidium drug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies, in vitro toxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound against Cryptosporidium parvum Iowa and field isolates was comparable to that against Cryptosporidium hominis. Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic for C. parvum, we developed a novel in vitro parasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stage Cryptosporidium drug leads and may aid in planning in vivo efficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.
Cryptosporidiosis is a leading cause of life-threatening diarrhea in children, and the only currently approved drug is ineffective in malnourished children and immunocompromised people. Large-scale phenotypic screens are ongoing to identify anticryptosporidial compounds, but optimal approaches to prioritize inhibitors and establish a mechanistically diverse drug development pipeline are unknown. Here, we present a panel of medium-throughput mode of action assays that enable testing of compounds in several stages of the Cryptosporidium life cycle. Phenotypic profiles are given for thirty-nine anticryptosporidials. Using a clustering algorithm, the compounds sort by phenotypic profile into distinct groups of inhibitors that are either chemical analogs (i.e. same molecular mechanism of action (MMOA)) or known to have similar MMOA. Furthermore, compounds belonging to multiple phenotypic clusters are efficacious in a chronic mouse model of cryptosporidiosis. This suite of phenotypic assays should ensure a drug development pipeline with diverse MMOA without the need to identify underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.