The KdpD protein is a membrane-located sensory kinase (or signal transducer) critically involved in the regulation of the kdpABC operon that is responsible for a high-affinity transport system in Escherichia coli. In this study, a set of KdpD mutants, each resulting in a single amino acid substitution around the membrane-spanning regions of KdpD, was isolated. Amino acid substitutions in these KdpD mutants were located non-randomly, particularly within the C-terminal half of the membrane-spanning regions. This set of KdpD mutants exhibited altered transmembrane-signalling properties in response to external K+ and other stimuli. In particular, these mutants were found to be insensitive, if not completely, to the K+ signal. However, they were able to respond to other stimuli such as high-salt stress, as in the wild type. Therefore, in contrast to the wild type, the cells carrying these mutations exhibited high levels of the steady-state expression of kdp, regardless of external K+, provided that high concentrations of ionic solutes were supplemented to the cultures. More interestingly, the set of KdpD mutants could also respond to high concentrations of external non-ionic solutes such as sucrose and D-arabinose, thereby increasing substantially the steady-state expression of kdp in response to the medium osmolarity. Furthermore, it was found that certain chemicals, ethanol, chlorpromazine and procaine, could function as effectors for the KdpD mutants at relatively low concentrations in the media. Based on these findings, we have examined the primary signal(s) that regulates the function of KdpD. We propose here that KdpD can be considered to be an environmental sensor that exhibits sensing mechanisms in response to both the level of K+ and the physico-chemical state of the cytoplasmic membrane.
Senescence marker protein-30 (SMP30) was originally identified as a novel protein in the rat liver, the expression of which decreases androgen-independently with aging. We have now characterized a unique property of SMP30, the hydrolysis of diisopropyl phosphorofluoridate (DFP), which is similar to the chemical warfare nerve agents sarine, soman and tabun. Hydrolysis of DFP was stimulated equally well by 1 mM MgCl 2 , MnCl 2 or CoCl 2 , to a lesser extent by 1 mM CdCl 2 but not at all by 1 mM CaCl 2 . No 45 Ca 2þ -binding activity was detected for purified SMP30, suggesting that SMP30 is not a calciumbinding protein, as others previously stated. Despite the sequence similarity between SMP30 and a serum paraoxonase (PON), the inability of SMP30 to hydrolyze PON-specific substrates such as paraoxon, dihydrocoumarin, c-nonalactone, and d-dodecanolactone indicate that SMP30 is distinct from the PON family. We previously established SMP30 knockout mice and have now tested DFPase activity in their livers. The livers from wild-type mice contained readily detectable DFPase activity, whereas no such enzyme activity was found in livers from SMP30 knockout mice. Moreover, the hepatocytes of SMP30 knockout mice were far more susceptible to DFP-induced cytotoxicity than those from the wild-type. These results indicate that SMP30 is a unique DFP hydrolyzing enzyme in the liver and has an important detoxification effect on DFP. Consequently, a reduction of SMP30 expression might account for the age-associated deterioration of cellular functions and enhanced susceptibility to harmful stimuli in aged tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.