The pharmacokinetics of boron was studied in rats by administering a 1 ml oral dose of sodium tetraborate solution to several groups of rats (n=20) at eleven different dose levels ranging from 0 to 0.4 mg/100 g body weight as boron. Twenty-four-hour urine samples were collected after boron administration. After 24 h the average urinary recovery rate for this element was 99.6+/-7.9. The relationship between boron dose and excretion was linear (r=0.999) with a regression coefficient of 0.954. This result suggests that the oral bioavailability (F) of boron was complete. Another group of rats (n=10) was given a single oral injection of 2 ml of sodium tetraborate solution containing 0.4 mg of boron/100 g body wt. The serum decay of boron was followed and found to be monophasic. The data were interpreted according to a one-compartment open model. The appropriate pharmacokinetic parameters were estimated as follows: absorption half-life, t1/2a=0.608+/-0.432 h; elimination half-life, t1/2=4.64+/-1.19 h; volume of distribution, Vd = 142.0+/-30.2 ml/100 g body wt.; total clearance, Ctot=0.359+/-0.0285 ml/min per 100 g body wt. The maximum boron concentration in serum after administration (Cmax) was 2.13+/-0.270 mg/l, and the time needed to reach this maximum concentration (Tmax) was 1.76+/-0.887 h. Our results suggest that orally administered boric acid is rapidly and completely absorbed from the gastrointestinal tract into the blood stream. Boric acid in the intravascular space does not have a strong affinity to serum proteins, and rapidly diffuses to the extravascular space in proportion to blood flow without massive accumulation or binding in tissues. The main route of boron excretion from the body is via glomerular filtration. It may be inferred that there is partial tubular resorption at low plasma levels. The animal model is proposed as a useful tool to approach the problem of environmental or industrial exposure to boron or in cases of accidental acute boron intoxication.
Inductively coupled plasma argon-emission spectrometry (ICPAES) was used to evaluate the lithium content of undiluted urine samples. The method can be performed with 1 mL of urine in a single tube using a routine ICPAES analysis for rapid and convenient assessment of lithium exposure in humans. Urine samples obtained from male workers (n = 86) who had not been exposed to lithium were used for the determination of this element by ICPAES. The obtained concentrations were corrected using a specific gravity of 1.024. The particular frequency distribution resulted in a log-normal distribution diagram for anatomical spread. Geometric mean value for urinary lithium in the nonexposed male workers was 23.5 microg/L, and the confidence interval from a log-normal distribution was 11.0 to 50.5 microg/L. Taking into consideration a short biological half-life and the massive urine excretion of lithium, urinary lithium was considered to be a useful index for monitoring of exposure. Calibration curves obtained for lithium standards had good sensitivity and linearity. Good reproducibility was assessed by lithium addition to urine samples. It was concluded that the obtained lithium reference values would be useful for the early diagnosis of lithium intoxication or in the assessment of the degree of exposure to lithium in subjects at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.