The transition of intestinal microbiota with age has been well described in humans. However, the age-related changes in intestinal microbiota of cats have not been well studied. In the present study, we investigated the composition of intestinal microbiota of cats in 5 different age groups (pre-weanling, weanling, young, aged, senile) with a culture-based method. For lactobacilli and bifidobacteria, we also quantified with molecular-based method, real-time PCR. The results suggested that the composition of the feline intestinal microbiota changes with age, while the changes were different from those of humans and dogs. Bifidobacteria which are predominant in human intestine or lactobacilli which are predominant in dog intestine, did not appear to be important in cat intestines. Enterococci, instead, seem to be major lactic acid producing bacteria in cats. We also identified lactobacilli and bifidobacteria at the species level based on 16S rRNA gene sequences and found that the species composition of Lactobacillus also changed with age.
The role of the influenza virus polymerase complex in host range restriction has been well-studied and several host range determinants, such as the polymerase PB2-E627K and PB2-D701N mutations, have been identified. However, there may be additional, currently unknown, human adaptation polymerase mutations. Here, we used a database search of influenza virus H5N1 clade 1.1, clade 2.3.2.1 and clade 2.3.4 strains isolated from 2008–2012 in Southern China, Vietnam and Cambodia to identify polymerase adaptation mutations that had been selected in infected patients. Several of these mutations acted either alone or together to increase viral polymerase activity in human airway cells to levels similar to the PB2-D701N and PB2-E627K single mutations and to increase progeny virus yields in infected mouse lungs to levels similar to the PB2-D701N single mutation. In particular, specific mutations acted synergistically with the PB2-D701N mutation and showed synergistic effects on viral replication both in human airway cells and mice compared with the corresponding single mutations. Thus, H5N1 viruses in infected patients were able to acquire multiple polymerase mutations that acted cooperatively for human adaptation. Our findings give new insight into the human adaptation of AI viruses and help in avian influenza virus risk assessment.
Nipah virus (NiV) is a new zoonotic paramyxovirus that emerged in 1998 and is now classified in the genus Henipavirus along with the closely related Hendra virus (HeV). NiV is highly pathogenic in several vertebrate species including humans, and the lack of available vaccines or specific treatment restricts it to biosafety level 4 (BSL4) containment. A serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing green fluorescent protein (GFP) and bearing the F and G proteins of NiV (VSV-NiV-GFP). The neutralization titers were obtained by counting GFP-expressing cells or by measuring fluorescence. The performance of this new assay was compared against the conventional test using live NiV with panels of sera from several mammalian species, including sera from NiV outbreaks, experimental infections, as well as HeV-specific sera. The results obtained with the VSV-NiV-GFP based test correlated with those obtained using live NiV. Using a 50% reduction in VSV-NiV-GFP infected cells as the cut-off for neutralization, this new assay demonstrated its potential as an effective tool for detecting NiV neutralizing antibodies under BSL2 containment with greater speed, sensitivity and safety as compared to the conventional NiV serum neutralization test.
A switch of viral hemagglutinin receptor binding specificity from bird-type α2,3- to human-type α2,6-linked sialic acid is necessary for an avian influenza virus to become a pandemic virus. In this study, an easy-to-use strip test to detect receptor binding specificity of influenza virus was developed. A biotinylated anti-hemagglutinin antibody that bound a broad range of group 1 influenza A viruses and latex-conjugated α2,3 (blue) and α2,6 (red) sialylglycopolymers were used in an immunochromatographic strip test, with avidin and lectin immobilized on a nitrocellulose membrane at test and control lines, respectively. Accumulation of a sialylglycopolymer-virus-antibody complex at the test line was visualized by eye. The strip test could be completed in 30min and did not require special equipment or skills, thereby avoiding some disadvantages of current methods for analyzing receptor binding specificity of influenza virus. The strip test could detect the receptor binding specificity of a wide range of influenza viruses, as well as small increases in the binding affinity of variant H5N1 viruses to α2,6 sialylglycans at viral titers >128 hemagglutination units. The strip test results were in agreement with those of ELISA virus binding assays, with correlations >0.95. In conclusion, the immunochromatographic strip test developed in this study should be useful for monitoring potential changes in the receptor binding specificity of group 1 influenza A viruses in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.