Objective. To compare the expression of galectin 9 (Gal-9) in synovial tissue (ST) from rheumatoid arthritis (RA) patients and osteoarthritis (OA) patients and to evaluate the effects of Gal-9 on fibroblast-like synoviocytes (FLS) in these patients.Methods. The expression of Gal-9 in ST and FLS was compared using immunohistochemical techniques. Apoptotic cells in RA and OA ST samples were detected by TUNEL assay. Apoptosis of FLS was analyzed by the sub-G 1 method in vitro. The in vivo suppressive effects of Gal-9 on collagen-induced arthritis (CIA) in a mouse model were also elucidated.Results. The percentage of Gal-9-positive cells in ST samples and the amount of Gal-9 in synovial fluid samples were significantly higher in patients with RA than in patients with OA, suggesting the involvement of Gal-9 in the development of RA. Compared with the 2 wild-type Gal-9 forms, stable Gal-9, a mutant protein resistant to proteolysis, significantly induced apoptosis of FLS from RA patients. In contrast, other galectins, such as Gal-1, Gal-3, and Gal-8, did not induce apoptosis or suppress the proliferation of human RA FLS. Stable Gal-9 preferentially induced apoptosis and suppressed the proliferation of RA FLS in vitro. It also induced apoptosis of cells in RA ST implanted into SCID mice in vivo. In a mouse model of CIA, apoptotic cells were detected in the joints of stable Gal-9-treated mice, but not phosphate buffered saline-treated mice, and suppressed CIA characterized by pannus formation with inflammatory cell infiltration and bone/cartilage destruction.Conclusion. Gal-9-induced apoptosis of hyperproliferative RA FLS may play a critical role in the suppression of RA.
Various countries have established regulations that stipulate the labeling of agricultural commodities, feed, and food products that contain or are made from genetically modified (GM) material or that contain adventitious GM material in amounts that exceed certain threshold levels. While regulations in some countries refer to GM material on a weight per weight (w/w) percentage, the currently applied detection methods do not directly measure the w/w percentage of the GM material. Depending on the particular method and the sample matrix it is applied to, the conversion of analytical results to a w/w percentage is challenging or not possible. The first rapid PCR system for GM maize detection on a single kernel basis has been developed. The equipment for the grinding of individual kernels and a silica membrane-based 96-well DNA extraction kit were both significantly revised and optimized for this particular purpose, respectively. We developed a multiplex real-time PCR method for the rapid quantification of GM DNA sequences in the obtained DNA solutions. In addition, a multiplex qualitative PCR detection method allows for the simultaneous detection of different GM maize traits in each kernel and thereby for identification of individual kernels that contain a combination of two or more GM traits. Especially for grain samples that potentially contain combined-trait GM maize kernels, the proposed methods can deliver informative results in a rapid, precise, and reliable manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.