We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.
We demonstrate a novel multifocal, multiphoton microscope that is capable of simultaneous dynamic imaging of multiple focal planes. We show for the first time that multimodal, multiphoton images excited with orthogonal polarizations can be acquired simultaneously in both the transmission and epi directions.
We present a novel Yb:KGd(WO(4))(2) oscillator design that generates six beams of temporally delayed, 253 fs, 11 nJ pulses. This allows multifocal nonlinear microscopy to be performed without the need for complicated optical multiplexers. We demonstrate our design with twelve simultaneously acquired two-photon, second-harmonic and/or third-harmonic images generated from six laterally separated foci.
A challenge for nonlinear imaging in living tissue is to maximize the total fluorescent yield from each fluorophore. We investigated the emission rates of three fluorophores – rhodamine B, a red fluorescent protein, and CdSe quantum dots – while manipulating the phase of the laser excitation pulse at the focus. In all cases a transform-limited pulse maximized the total yield to insure the highest signal-to-noise ratio. Further, we find evidence of fluorescence anti-bleaching in quantum dot samples.
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.