We demonstrate a simple and successful synthetic approach to devise a highly efficient DNA delivery system with low cytotoxicity and low cost. Polyamidoamine (PAMAM) dendrimer is a highly efficient DNA delivery agent, when compared to other chemical transfection reagents. Partially degraded, high-generation dendrimers offer even higher efficiency, presumably due to enhanced flexibility of the otherwise rigid dendrimer chains. We hypothesized that chemical modification of low generation dendrimer with biocompatible poly(ethylene glycol) (PEG) chains would create a conjugate of PAMAM core with flexible PEG chains, which mimics the fractured high-generation dendrimer and produces high transfection efficiency. Generation 5 PAMAM was modified with 3400 molecular weight PEG. The novel conjugate produced a 20-fold increase in transfection efficiency compared with partially degraded dendrimer controls. The cytotoxicity of PEGylated dendrimers was very low. This extremely efficient, highly biocompatible, low-cost DNA delivery system can be readily used in basic research laboratories and may find future clinical applications.
While chronic use of indwelling micromachined neural prosthetic devices has great potential, the development of reactive responses around them results in a decrease in electrode function over time. Since the cellular events responsible for these responses may be anti-inflammatory in nature, we have tested the effectiveness of dexamethasone and cyclosporin A as potential drugs for developing intervention strategies following insertion of single-shank micromachined silicon devices. Peripheral injection of dexamethasone was effective in attenuating increased expression of glial fibrillary acidic protein and astrocyte hyperplasia observed during both initial- and sustained-reactive responses observed at one and six weeks post insertion, respectively. Peripheral injection of cyclosporin A had no positive effect. If anything, application of this drug increased the early reactive response. Effectiveness of local release of dexamethasone in rat neocortex was tested by inserting ribbons of poly (ethyl-vinyl) acetate containing 35% (w/w) dexamethasone. Initial concentrations of dexamethasone were similar to those obtained by peripheral injection. Local drug release provided continued control of cellular reactive responses during the six-week study period. These results demonstrate that peripheral delivery of dexamethasone can be used to control reactive responses and that local drug delivery by slow-release from biocompatible polymers may be a more effective method of drug intervention. Incorporating these strategies on micromachined devices may provide an intervention strategy that will insure the chronic functioning of electrodes on intracortical neuroprosthetic devices.
Low water solubility and rapid elimination from the brain inhibits local delivery via implants and other delivery systems of most therapeutic drugs to the brain. We have conjugated the chemotherapy drug, camptothecin (CPT), to poly(ethylene glycol) (PEG) of molecular weight 3400 using previously established protocols. These new conjugates are very water-soluble and hydrolyze at a pH-dependent rate to release the active parent drug. We have studied the uptake of these conjugates by cells in vitro and quantified their cytotoxicity toward gliosarcoma cells. These conjugates were loaded into biodegradable polymeric controlled-release implants, and their release characteristics were studied in vitro. We implanted similar polymeric disks into rat brains and used a novel sectioning scheme to determine the concentration profile of CPT in comparison to conjugated CPT in the brain after 1, 7, 14, and 28 days. We have found that PEGylation greatly increases the maximum achievable drug concentration and greatly enhances the distribution properties of CPT, compared to corelease of CPT with PEG. Although only one percent of CPT in the conjugate system was found in the hydrolyzed, active form, drug concentrations were still significantly above cytotoxic levels over a greater distance for the conjugate system. On the basis of these results, we believe that PEGylation shows great promise toward increasing drug distribution after direct, local delivery in the brain for enhanced efficacy in drug treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.