The quantitative analysis of andrographolides in Andrographis paniculata plant materials is essential for pharmaceutical factories. This analysis cannot be done for all samples due to the conventional process using the extraction and HPLC methods requires a long analysis time and sample destruction. Therefore, near-infrared spectroscopy (NIRS) was employed to classify the class of A. paniculata and to determine the content of two active ingredients, andrographolide (AP1) and dehydroandrographolide (AP3) in A. paniculata , rapidly and non-destructively. One hundred twenty dried powder samples were obtained from aerial parts, branches, leaves, and branches mixed with leaves. The NIR absorption scans were collected from a broad spectral region (1000–2500 nm). Then, the scanned samples were extracted and analyzed for their AP1 and AP3 contents using an HPLC reference method. The success classification model based on AP1 level was developed using the second derivative pretreated NIR spectra of the entire wavelength region using the Partial Least Squares-Discriminant Analysis (PLS-DA) method. The NIR calibration models were developed and tested for quantitative analysis with 50 independent samples. The models were identified for the analysis of the AP1 content with excellent performance (correlation coefficient ( R ) = 0.98; standard error of validation (SEV) = 0.24%) and for the analysis of the AP3 content at a good level of efficiency ( R = 0.93; SEV = 0.15%). This study showed that NIR spectroscopic method offers rapid analysis for the selection of A. paniculata that meets the requirement in bioactive amount. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-021-01746-0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.