Silane adhesion promoters are commonly used to improve the adhesion, durability, and corrosion resistance of polymer-oxide interfaces. The current study investigates a model interface consisting of the natural oxide of 〈100〉 Si and an epoxy cured from diglycidyl ether of bisphenol A (DGEBA) and triethylenetetraamine (TETA). The thickness of (3-glycidoxypropyl)trimethoxysilane (GPS) films placed between the two materials provided the structural variable. Five surface treatments were investigated: a bare interface, a rough monolayer film, a smooth monolayer film, a 5 nm thick film, and a 10 nm thick film. Previous neutron reflection experiments revealed large extension ratios (>2) when the 5 and 10 nm thick GPS films were exposed to deuterated nitrobenzene vapor. Despite the larger extension ratio for the 5 nm thick film, the epoxy/Si fracture energy (Gc) was equal to that of the 10 nm thick film under ambient conditions. Even the smooth monolayer exhibited the same Gc. Only when the monolayer included a significant number of agglomerates did the Gc drop to levels closer to that of the bare interface. When immersed in water at room temperature for 1 week, the threshold energy release rate (Gth) was nearly equal to Gc for the smooth monolayer, 5 nm thick film, and 10 nm thick film. While the Gth for all three films decreased with increasing water temperature, the Gth of the smooth monolayer decreased more rapidly. The bare interface was similarly sensitive to temperature; however, the Gth of the rough monolayer did not change significantly as the temperature was raised. Despite the influence of pH on hydrolysis, the Gth was insensitive to the pH of the water for all surface treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.