The method of intersecting slopes (SHV with SNV) via BIS is a new method for the prediction DW. This approach will offer considerable improvement for the routine management of DW in the dialysis setting.
In summary the blood volume monitor allows precise and reliable measurement of relative blood volume. It provides the instrumentation essential for feedback control of relative blood volume during dialysis.
In patients with kidney failure, adequate control of fluid status remains one of the most difficult routine issues to be addressed in the modern style of dialysis. This is primarily due to the lack of quantitative methods for the assessment of fluid status and the reliance on subjective criteria. Fluid is removed from the blood during dialysis treatments using a process called ultrafiltration. The last decade has seen considerable developments in blood volume monitoring (BVM) technology which has enabled responses to ultrafiltration to be continually monitored on an individual basis. This has enabled feedback control of patients' blood volume to be applied with partial success, reducing the number of symptoms. The feedback control algorithms employed have been relatively unsophisticated, using simple proportional control with no attempt to include models of the patient fluid dynamics. This paper describes the development of some prototype fluid kinetic models which may be used in a more advanced control system. Initial results demonstrate the importance of active control processes in the patients' physiological compensatory mechanisms.
Corynebacterium glutamicum transiently accumulates glycogen as carbon capacitor during the early exponential growth phase in media containing carbohydrates. In some bacteria glycogen is synthesized by the consecutive action of ADP-glucose pyrophosphorylase (GlgC), glycogen synthase (GlgA) and glycogen branching enzyme (GlgB). GlgC and GlgA of C. glutamicum have been shown to be necessary for glycogen accumulation in this organism. However, although cg1381 has been annotated as the putative C. glutamicum glgB gene, cg1381 and its gene product have not been characterized and their role in transient glycogen accumulation has not yet been investigated. We show here that the cg1381 gene product of C. glutamicum catalyses the formation of α-1,6-glycosidic bonds in polysaccharides and thus represents a glycogen branching enzyme. RT-PCR experiments revealed glgB to be co-transcribed with glgE, probably encoding a maltosyltransferase. Promoter activity assays with the glgE promoter region revealed carbon-source-dependent expression of the glgEB operon. Characterization of the growth and glycogen content of glgB-deficient and glgB-overexpressing strains showed that the glycogen branching enzyme GlgB is essential for glycogen formation in C. glutamicum. Taken together these results suggest that an interplay of the enzymes GlgC, GlgA and GlgB is not essential for growth, but is required for synthesis of the transient carbon capacitor glycogen in C. glutamicum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.