This paper investigates a queueing system in which the controller can perform admission and service rate control. In particular, we examine a single-server queueing system with Poisson arrivals and exponentially distributed services with adjustable rates. At each decision epoch the controller may adjust the service rate. Also, the controller can reject incoming customers as they arrive. The objective is to minimize long-run average costs which include: a holding cost, which is a non-decreasing function of the number of jobs in the system; a service rate cost c(x), representing the cost per unit time for servicing jobs at rate x; and a rejection cost κ for rejecting a single job. From basic principles, we derive a simple, efficient algorithm for computing the optimal policy. Our algorithm also provides an easily computable bound on the optimality gap at every step. Finally, we demonstrate that, in the class of stationary policies, deterministic stationary policies are optimal for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.